2024-01-03:用go语言,给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time, 分别表示给 n 堵不

Golang
243
0
0
2024-03-18
标签   Golang基础

2024-01-03:用go语言,给你两个长度为 n 下标从 0 开始的整数数组 cost 和 time,

分别表示给 n 堵不同的墙刷油漆需要的开销和时间。你有两名油漆匠,

一位需要 付费 的油漆匠,刷第 i 堵墙需要花费 time[i] 单位的时间,

开销为 cost[i] 单位的钱。

一位 免费 的油漆匠,刷 任意 一堵墙的时间为 1 单位,开销为 0,

但是必须在付费油漆匠 工作 时,免费油漆匠才会工作。

请你返回刷完 n 堵墙最少开销为多少?

输入:cost = [1,2,3,2], time = [1,2,3,2]。

输出:3。

来自力扣。2742. 给墙壁刷油漆。

答案2024-01-03:

来自左程云。

灵捷3.5

大体过程如下:

paintWalls1 函数

1.paintWalls1 函数是基于递归方法的解决方案。

2.在 process1 函数中,通过递归方式将每种情况下的最小开销计算出来。

3.递归调用时考虑两种情况,选择当前墙刷或者不刷,计算出最小开销。

4.该方法在递归调用的过程中可能会有很多重复计算,效率可能不高。

paintWalls2 函数

1.paintWalls2 函数采用了记忆化搜索的方式。

2.定义了一个二维数组 dp 用于记录已经计算过的结果,避免重复计算。

3.通过递归+记忆化搜索的方式优化了重复计算,提高了效率。

paintWalls3 函数

1.paintWalls3 函数采用了动态规划的方式。

2.使用一个一维数组 dp 保存不同墙数下的最小开销。

3.结合循环和动态递推的方式,迭代计算每墙的最小开销,直到第 n 墙。

时间和空间复杂度

  • • 时间复杂度:
  • paintWalls1 使用了递归,可能有大量重复计算,其时间复杂度为 O(2^n)。
  • paintWalls2paintWalls3 使用了记忆化搜索和动态规划,时间复杂度都为 O(n^2),其中 n 为墙的数量。
  • • 空间复杂度:
  • paintWalls1paintWalls2 的额外空间复杂度为 O(n^2),因为它们都使用了二维数组存储中间结果。
  • paintWalls3 的额外空间复杂度为 O(n),因为它只用了一个一维数组保存中间结果。

go完整代码如下:

package main

import (
    "fmt"
    "math"
)

// paintWalls1 represents the first function from the given Java code.
func paintWalls1(cost []int, time []int) int {
    return process1(cost, time, 0, len(cost))
}

// process1 is the recursive function as mentioned in the Java code.
func process1(cost []int, time []int, i int, s int) int {
    if s <= 0 {
        return 0
    }
    // s > 0
    if i == len(cost) {
        return math.MaxInt32
    } else {
        p1 := process1(cost, time, i+1, s)
        p2 := math.MaxInt32
        next2 := process1(cost, time, i+1, s-1-time[i])
        if next2 != math.MaxInt32 {
            p2 = cost[i] + next2
        }
        return int(math.Min(float64(p1), float64(p2)))
    }
}

// paintWalls2 is the second function from the given Java code.
func paintWalls2(cost []int, time []int) int {
    n := len(cost)
    dp := make([][]int, n+1)
    for i := range dp {
        dp[i] = make([]int, n+1)
        for j := range dp[i] {
            dp[i][j] = -1
        }
    }
    return process2(cost, time, 0, n, dp)
}

// process2 represents the recursive function in the second approach of the Java code.
func process2(cost []int, time []int, i int, s int, dp [][]int) int {
    if s <= 0 {
        return 0
    }
    if dp[i][s] != -1 {
        return dp[i][s]
    }
    var ans int
    if i == len(cost) {
        ans = math.MaxInt32
    } else {
        p1 := process2(cost, time, i+1, s, dp)
        p2 := math.MaxInt32
        next2 := process2(cost, time, i+1, s-1-time[i], dp)
        if next2 != math.MaxInt32 {
            p2 = cost[i] + next2
        }
        ans = int(math.Min(float64(p1), float64(p2)))
    }
    dp[i][s] = ans
    return ans
}

// paintWalls3 is the third function from the given Java code.
func paintWalls3(cost []int, time []int) int {
    n := len(cost)
    dp := make([]int, n+1)
    for i := range dp {
        dp[i] = math.MaxInt32
    }
    dp[0] = 0
    for i := n - 1; i >= 0; i-- {
        for s := n; s >= 1; s-- {
            if s-1-time[i] <= 0 {
                dp[s] = int(math.Min(float64(dp[s]), float64(cost[i])))
            } else if dp[s-1-time[i]] != math.MaxInt32 {
                dp[s] = int(math.Min(float64(dp[s]), float64(cost[i]+dp[s-1-time[i]])))
            }
        }
    }
    return dp[n]
}

func main() {
    cost := []int{1, 2, 3, 2}
    time := []int{1, 2, 3, 2}
    fmt.Println("Result 1:", paintWalls1(cost, time))
    fmt.Println("Result 2:", paintWalls2(cost, time))
    fmt.Println("Result 3:", paintWalls3(cost, time))
}

rust完整代码如下:

fn paint_walls1(cost: Vec<i32>, time: Vec<i32>) -> i32 {
    process1(&cost, &time, 0, cost.len() as i32)
}

fn process1(cost: &Vec<i32>, time: &Vec<i32>, i: i32, s: i32) -> i32 {
    if s <= 0 {
        return 0;
    }
    if (i as usize) == cost.len() {
        return i32::MAX;
    } else {
        let p1 = process1(cost, time, i + 1, s);
        let mut p2 = i32::MAX;
        let next2 = process1(cost, time, i + 1, s - 1 - time[i as usize]);
        if next2 != i32::MAX {
            p2 = cost[i as usize] + next2;
        }
        return p1.min(p2);
    }
}

fn paint_walls2(cost: Vec<i32>, time: Vec<i32>) -> i32 {
    let n = cost.len();
    let mut dp = vec![vec![-1; n + 1]; n + 1];
    process2(&cost, &time, 0, n as i32, &mut dp)
}

fn process2(cost: &Vec<i32>, time: &Vec<i32>, i: i32, s: i32, dp: &mut Vec<Vec<i32>>) -> i32 {
    if s <= 0 {
        return 0;
    }
    if dp[i as usize][s as usize] != -1 {
        return dp[i as usize][s as usize];
    }
    let ans;
    if (i as usize) == cost.len() {
        ans = i32::MAX;
    } else {
        let p1 = process2(cost, time, i + 1, s, dp);
        let mut p2 = i32::MAX;
        let next2 = process2(cost, time, i + 1, s - 1 - time[i as usize], dp);
        if next2 != i32::MAX {
            p2 = cost[i as usize] + next2;
        }
        ans = p1.min(p2);
    }
    dp[i as usize][s as usize] = ans;
    ans
}

fn paint_walls3(cost: Vec<i32>, time: Vec<i32>) -> i32 {
    let n = cost.len();
    let mut dp = vec![i32::MAX; n + 1];
    dp[0] = 0;
    for i in (0..n).rev() {
        for s in (1..=n as i32).rev() {
            if s - 1 - time[i] <= 0 {
                dp[s as usize] = dp[s as usize].min(cost[i]);
            } else if dp[(s - 1 - time[i]) as usize] != i32::MAX {
                dp[s as usize] = dp[s as usize].min(cost[i] + dp[(s - 1 - time[i]) as usize]);
            }
        }
    }
    dp[n]
}

fn main() {
    let cost = vec![1, 2, 3, 2];
    let time = vec![1, 2, 3, 2];
    
    let result1 = paint_walls1(cost.clone(), time.clone());
    let result2 = paint_walls2(cost.clone(), time.clone());
    let result3 = paint_walls3(cost.clone(), time.clone());

    println!("Result for paint_walls1: {}", result1);
    println!("Result for paint_walls2: {}", result2);
    println!("Result for paint_walls3: {}", result3);
}

c++完整代码如下:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// 暴力递归
int process1(vector<int>& cost, vector<int>& time, int i, int s) {
    if (s <= 0) {
        return 0;
    }
    if (i == cost.size()) {
        return INT_MAX;
    }
    else {
        int p1 = process1(cost, time, i + 1, s);
        int p2 = INT_MAX;
        int next2 = process1(cost, time, i + 1, s - 1 - time[i]);
        if (next2 != INT_MAX) {
            p2 = cost[i] + next2;
        }
        return min(p1, p2);
    }
}

int paintWalls1(vector<int>& cost, vector<int>& time) {
    return process1(cost, time, 0, cost.size());
}

// 暴力递归改记忆化搜索
int process2(vector<int>& cost, vector<int>& time, int i, int s, vector<vector<int>>& dp) {
    if (s <= 0) {
        return 0;
    }
    if (dp[i][s] != -1) {
        return dp[i][s];
    }
    int ans;
    if (i == cost.size()) {
        ans = INT_MAX;
    }
    else {
        int p1 = process2(cost, time, i + 1, s, dp);
        int p2 = INT_MAX;
        int next2 = process2(cost, time, i + 1, s - 1 - time[i], dp);
        if (next2 != INT_MAX) {
            p2 = cost[i] + next2;
        }
        ans = min(p1, p2);
    }
    dp[i][s] = ans;
    return ans;
}

int paintWalls2(vector<int>& cost, vector<int>& time) {
    int n = cost.size();
    vector<vector<int>> dp(n + 1, vector<int>(n + 1, -1));
    return process2(cost, time, 0, n, dp);
}

// 严格位置依赖的动态规划 + 空间压缩
int paintWalls3(vector<int>& cost, vector<int>& time) {
    int n = cost.size();
    vector<int> dp(n + 1, INT_MAX);
    dp[0] = 0;
    for (int i = n - 1; i >= 0; i--) {
        for (int s = n; s >= 1; s--) {
            if (s - 1 - time[i] <= 0) {
                dp[s] = min(dp[s], cost[i]);
            }
            else if (dp[s - 1 - time[i]] != INT_MAX) {
                dp[s] = min(dp[s], cost[i] + dp[s - 1 - time[i]]);
            }
        }
    }
    return dp[n];
}

int main() {
    vector<int> cost = { 1, 2, 3, 2 };
    vector<int> time = { 1, 2, 3, 2 };

    cout << "Result for paintWalls1: " << paintWalls1(cost, time) << endl;
    cout << "Result for paintWalls2: " << paintWalls2(cost, time) << endl;
    cout << "Result for paintWalls3: " << paintWalls3(cost, time) << endl;

    return 0;
}

c语言完整代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

int process1(int* cost, int* time, int i, int s, int costSize);

int paintWalls1(int* cost, int costSize, int* time, int timeSize) {
    return process1(cost, time, 0, costSize, costSize);
}

int process1(int* cost, int* time, int i, int s, int costSize) {
    if (s <= 0) {
        return 0;
    }
    if (i == costSize) {
        return INT_MAX;
    }
    else {
        int p1 = process1(cost, time, i + 1, s, costSize);
        int p2 = INT_MAX;
        int next2 = process1(cost, time, i + 1, s - 1 - time[i], costSize);
        if (next2 != INT_MAX) {
            p2 = cost[i] + next2;
        }
        return (p1 < p2) ? p1 : p2;
    }
}

int process2(int* cost, int* time, int i, int s, int costSize, int** dp);

int paintWalls2(int* cost, int costSize, int* time, int timeSize) {
    int** dp = (int**)malloc((costSize + 1) * sizeof(int*));
    for (int i = 0; i <= costSize; i++) {
        dp[i] = (int*)malloc((costSize + 1) * sizeof(int));
        for (int j = 0; j <= costSize; j++) {
            dp[i][j] = -1;
        }
    }
    int result = process2(cost, time, 0, costSize, costSize, dp);
    for (int i = 0; i <= costSize; i++) {
        free(dp[i]);
    }
    free(dp);
    return result;
}

int process2(int* cost, int* time, int i, int s, int costSize, int** dp) {
    if (s <= 0) {
        return 0;
    }
    if (dp[i][s] != -1) {
        return dp[i][s];
    }
    int ans;
    if (i == costSize) {
        ans = INT_MAX;
    }
    else {
        int p1 = process2(cost, time, i + 1, s, costSize, dp);
        int p2 = INT_MAX;
        int next2 = process2(cost, time, i + 1, s - 1 - time[i], costSize, dp);
        if (next2 != INT_MAX) {
            p2 = cost[i] + next2;
        }
        ans = (p1 < p2) ? p1 : p2;
    }
    dp[i][s] = ans;
    return ans;
}

int paintWalls3(int* cost, int costSize, int* time, int timeSize);

int paintWalls3(int* cost, int costSize, int* time, int timeSize) {
    int* dp = (int*)malloc((costSize + 1) * sizeof(int));
    for (int i = 0; i <= costSize; i++) {
        dp[i] = INT_MAX;
    }
    dp[0] = 0;
    for (int i = costSize - 1; i >= 0; i--) {
        for (int s = costSize; s >= 1; s--) {
            if (s - 1 - time[i] <= 0) {
                dp[s] = (dp[s] < cost[i]) ? dp[s] : cost[i];
            }
            else if (dp[s - 1 - time[i]] != INT_MAX) {
                dp[s] = (dp[s] < cost[i] + dp[s - 1 - time[i]]) ? dp[s] : cost[i] + dp[s - 1 - time[i]];
            }
        }
    }
    int result = dp[costSize];
    free(dp);
    return result;
}

int main() {
    int cost[] = { 1, 2, 3, 2 };
    int time[] = { 1, 2, 3, 2 };

    int result1 = paintWalls1(cost, 4, time, 4);
    printf("Result of paintWalls1: %d\n", result1);

    int result2 = paintWalls2(cost, 4, time, 4);
    printf("Result of paintWalls2: %d\n", result2);

    int result3 = paintWalls3(cost, 4, time, 4);
    printf("Result of paintWalls3: %d\n", result3);
    return 0;
}