关于使用Lambda表达式简化Comparator的使用问题

Java
317
0
0
2023-04-29
目录
  • Comparator 接口
  • 接口简介
  • 定义一个示例类用来演示:Dog类
  • 接口方法介绍
  • 直接使用接口的抽象方法创建 Comparator 对象
  • 接口中的静态方法和默认创建 Comparator 对象
  • comparing 方法(静态)
  • thenComparing 方法(默认)
  • 对于集合中含有 null 值元素的排序
  • 接口中其它方法
  • reversed方法
  • reverseOrder 方法
  • 总结

Comparator 接口

使用集合时,如果需要实现集合元素排序的话,通常有两种选择,元素本身实现 Comparable 接口或者集合使用 Comparator 对象实现排序。这里来介绍一个 Comparator 这个类。

接口简介

Comparator 是一个函数式接口,这个可以从它的定义上看出来。它具有这个注解:@FunctionalInterface

这个注解标注此接口属于函数式接口,意味着只能有一个抽象方法,但是带你进去看,你会发现两个抽象方法!

int compare(T o1, T o2);
boolean equals(Object obj);

这并不是定义错误,而是上面那个注解(@FunctionalInterface)的文档里有说明:如果接口声明了一个覆盖了 java.lang.Object 的全局方法之一的抽象方法,那么它不会计入接口的抽象方法数量中,因为接口的任何实现都将具有 java.lang.Object 或者其它地方的实现。 因此,它确实是只有一个抽象方法:

int compare(T o1, T o2);

定义一个示例类用来演示:Dog类

package com.dragon;

public class Dog {
	private String name;
	private int age;
	private double weight;
	
	public Dog(String name, int age, double weight) {
		super();
		this.name = name;
		this.age = age;
		this.weight = weight;
	}
	//省略 getter 和 setter 方法,使用 IDE 自动生成比较方便。
	//下面两个方法,也都可以自动生成。

	@Override
	public String toString() {
		return "Dog [name=" + name + ", age=" + age + ", weight=" + weight + "]";
	}

	@Override
	public int hashCode() {
		final int prime = 31;
		int result = 1;
		result = prime * result + age;
		result = prime * result + ((name == null) ? 0 : name.hashCode());
		long temp;
		temp = Double.doubleToLongBits(weight);
		result = prime * result + (int) (temp ^ (temp >>> 32));
		return result;
	}

	@Override
	public boolean equals(Object obj) {
		if (this == obj)
			return true;
		if (obj == null)
			return false;
		if (getClass() != obj.getClass())
			return false;
		Dog other = (Dog) obj;
		if (age != other.age)
			return false;
		if (name == null) {
			if (other.name != null)
				return false;
		} else if (!name.equals(other.name))
			return false;
		if (Double.doubleToLongBits(weight) != Double.doubleToLongBits(other.weight))
			return false;
		return true;
	}
}

接口方法介绍

这个接口虽然是一个函数式接口,但是它的方法可不少!所以,它可以实现非常丰富的排序功能!

直接使用接口的抽象方法创建 Comparator 对象

**排序规则是按照年龄升序。我这里使用的表达式为:

o1.getAge()-o2.getAge();

如果想要实现反序,调换 o1和o2的位置即可,但是我们不使用这种方式。下面会使用更加方便的方式。

**

1.使用原始的匿名内部类方式,实现 Comparator 对象。

package com.dragon;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class ComparatorTest {
	public static void main(String[] args) {
		//测试使用的集合,下面不再提供,只提供方法的实现。
		List<Dog> dogList = new ArrayList<>();
		dogList.add(new Dog("小黑", 3, 37.0));
		dogList.add(new Dog("二哈", 2, 40.0));
		dogList.add(new Dog("泰迪", 1, 8.0));
		dogList.add(new Dog("大黄", 4, 55.0));
		rawComparator(dogList);
	}
	
	/**
	 * 原始的实现比较器的方法,使用匿名类
	 * */
	static void rawComparator(List<? extends Dog> dogList) {
		dogList.sort(new Comparator<Dog>() {
			@Override
			public int compare(Dog o1, Dog o2) {
				return o1.getAge()-o2.getAge();
			}
		});
		dogList.forEach(System.out::println);
	}
}

说明:这样显得较为繁琐,不够体现代码的简介,下面使用Java8的 lambda 表达式来改写。

运行结果:

在这里插入图片描述

2.使用Java8 的lambda 表达式来简化代码

/**
* 使用lambda的写法
* */
static void lambda(List<? extends Dog> dogList) {
	Comparator<Dog> c = (dog1, dog2)->dog1.getAge() - dog2.getAge();
	dogList.sort(c);
	dogList.forEach(System.out::println);
}

3.舍去中间变量 c,进一步简化代码

/**
 * 舍去中间变量 c 的写法
 * */
static void lambda2(List<? extends Dog> dogList) {
	dogList.sort((dog1, dog2)->dog1.getAge() - dog2.getAge());
	dogList.forEach(System.out::println);
}

总结:基本上,我们第一次接触 lambda 的话,都会去学习写这个表达式,感觉使用起来特别的方便,达到了简化代码的目的。

接口中的静态方法和默认创建 Comparator 对象

comparing 方法(静态)

接口中有一个静态方法 comparing,使用起来也特别的方便,基本上可以代替上面的那种方式了,它的参数为:Function<? super T, ? extends U> keyExtractor,这需要传入一个 lambda 表达式。虽然这些方法的定义很复杂,但是使用起来却感觉很简单,复杂的事情都被别人做了。

comparing 方法源码

public static <T, U extends Comparable<? super U>> Comparator<T> comparing(
            Function<? super T, ? extends U> keyExtractor)
{
    Objects.requireNonNull(keyExtractor);
    return (Comparator<T> & Serializable)
        (c1, c2) -> keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
}

1.使用 comparing方法创建 Comparator 对象

/**
 * 使用 Java 8 提供的静态方法 comparing 方法,
 * 再配合方法引用,写法更加简洁了。但是看这个
 * 方法,我们可能会疑问排序顺序到底是正序还是逆序呢?
 * */
static void lambda3(List<? extends Dog> dogList) {
	dogList.sort(Comparator.comparing(Dog::getAge));
	dogList.forEach(System.out::println);
}

说明: 通过上面的源码可以看到,c1 和 c2 的位置是固定的(排序是固定的升序方式),它是通过 Function 接口,调用apply方法,生成一个对象,然后调用 compareTo 方法进行比较的。(例如,我们传进去的是age,类型为int,但是通过apply会返回 Integer类型。因为包装类型和 String 类都实现了 Comparable 接口。)

注意: 如果不使用方法引用的话,那么 Dog::getAge 应该被替换为:

(dog1, dog2)->dog1.getAge() - dog2.getAge()

不过,这样做显然就是去了简介性。

2.使用重载的 comparing 方法创建 Comparator 对象

comparing 方法源码

 public static <T, U> Comparator<T> comparing(
            Function<? super T, ? extends U> keyExtractor,
            Comparator<? super U> keyComparator)
 {
     Objects.requireNonNull(keyExtractor);
     Objects.requireNonNull(keyComparator);
     return (Comparator<T> & Serializable)
         (c1, c2) -> keyComparator.compare(keyExtractor.apply(c1),
                                           keyExtractor.apply(c2));
 }

说明: 它比上面的 comparing 方法多了一个参数,意味着它可以实现更丰富的比较操作。而且,这个参数也是一个 Comparator 对象。

好了,下面使用这个方法,来实现按照年龄逆序排序。

/**
 * 解决 lambda3 中的疑问,关于排序顺序的问题。
 * 上面那个方法是一个简便方法,它的排序是默认的正序,
 * 而我们有时会希望逆序排序。所以我们需要使用它的一个重载方法了。
 * */
static void lambda4(List<? extends Dog> dogList) {
	//它的第二个参数,可能会引起困惑,第二个参数的类型就是第一个参数指定的类型(如果是基本类型,则为对应的包装类)
	dogList.sort(Comparator.comparing(Dog::getAge, (age1, age2)->age2-age1));
	dogList.forEach(System.out::println);
}

注意: 这里的第二个参数中的 age1 和 age2 的实际类型为 Integer而不是 int,可以直接相减的原因是因为自动拆箱机制,所以这里推荐更换为:

说明: 这样看起来,似乎不够简洁,下面将使用更加简洁的方式来实现逆序排序。

(age1, age2)->age2.compareTo(age1)

运行结果:

在这里插入图片描述

3.使用comparing方法的更加简洁形式

Comparator 具有一个静态的方法,它的功能很简单就是逆序。

/**
 * 相信看完 lambda4 都会感觉还没有 lambda2 的方式简洁呢,
 * 但是因为正序和逆序只是一个变换顺序的问题,所以它也提
 * 供了简洁的实现。当然了,这也与我这里的使用的Dog对象,比较简单有关,
 * 只看这里的话, 和上面 lambda2 进行比较,优势不太明显。
 * */
static void lambda5(List<? extends Dog> dogList) {
	dogList.sort(Comparator.comparing(Dog::getAge, Comparator.reverseOrder()));
	dogList.forEach(System.out::println);
}

这样,代码就显得简洁多了,当然了,还可以使用一个默认方法当到同样的目的。

/**
 * 这样也可以
 * */
static void lambda55(List<? extends Dog> dogList) {
	dogList.sort(Comparator.comparing(Dog::getAge).reversed());
	dogList.forEach(System.out::println);
}

thenComparing 方法(默认)

thenComparing 方法源码:

default <U extends Comparable<? super U>> Comparator<T> thenComparing(
            Function<? super T, ? extends U> keyExtractor)
{
    return thenComparing(comparing(keyExtractor));
}

有时候,会碰到这样的需求,需要使用多种排序方法,而不是单纯的一种。例如使用:姓名、年龄、体重进行排序。这时就需要使用 thenComparing 方法了。

/**
 * 实现按照多个标准排序:姓名、年龄、体重
 * 全部按照自然排序(升序)的顺序
 * */
static void lambda7(List<? extends Dog> dogList) {
	dogList.sort(Comparator
			.comparing(Dog::getName)
			.thenComparing(Dog::getAge)
			.thenComparing(Dog::getWeight));
	dogList.forEach(System.out::println);
}

说明1: 这里按照三个条件排序是指如果姓名相同了,再按照下一个排序,以此类推,所以你可能看不出来差别(这个结果和按照姓名排序一样,主要是排序的数据不太适合,但我不想换了。)。

说明2: 你仍然可以继续添加更多的排序规则,因为 thenComparing 方法也有重载的方法。

运行结果:

在这里插入图片描述

thenComparing 方法的重载方法源码:

 default <U> Comparator<T> thenComparing(
            Function<? super T, ? extends U> keyExtractor,
            Comparator<? super U> keyComparator)
 {
     return thenComparing(comparing(keyExtractor, keyComparator));
 }

它的第二个方法,也和上面的 comparing 方法作用相同,是自己实现一个key的比较器,这里就不再说明了。

适用于 Int、long 和 double 类型的 thenComapring 方法

default Comparator<T> thenComparingInt(ToIntFunction<? super T> keyExtractor) {
    return thenComparing(comparingInt(keyExtractor));
}
  
default Comparator<T> thenComparingLong(ToLongFunction<? super T> keyExtractor) {
    return thenComparing(comparingLong(keyExtractor));
}  

default Comparator<T> thenComparingDouble(ToDoubleFunction<? super T> keyExtractor) {
    return thenComparing(comparingDouble(keyExtractor));
}

说明:这几个方法和上面的 thenComparing 方法作用基本相同,但是更加适合处理 int、long和double类型。如果需要排序的类型为这几个,使用这些方法很好,但是我还是喜欢通用的 thenComparing 方法,这里只演示一个 thenComparingDouble 方法:

static void thenComparingDouble() {
	List<Dog> dogList = new ArrayList<>();
	dogList.add(new Dog("小黑", 3, 37.0));
	dogList.add(new Dog("二哈", 2, 55.0));
	dogList.add(new Dog("泰迪", 1, 8.0));
	dogList.add(new Dog("大黄", 2, 40.0));
	
	dogList.sort(Comparator
			.comparing(Dog::getAge)
			.thenComparingDouble(Dog::getWeight));
	dogList.forEach(System.out::println);
}

运行结果:

在这里插入图片描述

如果去掉 thenComparingDouble 方法,运行结果为:

注意和上面的结果对比。

在这里插入图片描述

适用于 Int、long 和 double 类型的 comapring 方法

这三个方法,也是专门用于处理 int、long 和double类型的,和使用 comparing方法差不多。

public static <T> Comparator<T> comparingInt(ToIntFunction<? super T> keyExtractor) {
        Objects.requireNonNull(keyExtractor);
    return (Comparator<T> & Serializable)
        (c1, c2) -> Integer.compare(keyExtractor.applyAsInt(c1), keyExtractor.applyAsInt(c2));
}

 public static <T> Comparator<T> comparingLong(ToLongFunction<? super T> keyExtractor) {
     Objects.requireNonNull(keyExtractor);
     return (Comparator<T> & Serializable)
         (c1, c2) -> Long.compare(keyExtractor.applyAsLong(c1), keyExtractor.applyAsLong(c2));
 }

public static<T> Comparator<T> comparingDouble(ToDoubleFunction<? super T> keyExtractor) {
    Objects.requireNonNull(keyExtractor);
    return (Comparator<T> & Serializable)
        (c1, c2) -> Double.compare(keyExtractor.applyAsDouble(c1), keyExtractor.applyAsDouble(c2));
}

这里演示 comparingIntcomparingDouble 两个方法的用法:

我感觉没什么区别,可能是我这个测试用例太简单了吧。

/**
 * comparingToInt
 * */
static void comparingToInt(List<? extends Dog> dogList) {
	dogList.sort(Comparator.comparingInt(Dog::getAge));
	dogList.forEach(System.out::println);
}

/**
 * comparingToDouble
 * */
static void comparingToDouble(List<? extends Dog> dogList) {
	dogList.sort(Comparator.comparingDouble(Dog::getWeight));
	dogList.forEach(System.out::println);
}

对于集合中含有 null 值元素的排序

static void nullSort() {
		List<String> strList = new ArrayList<>();
		strList.add("dog");
		strList.add("cat");
		strList.add(null);
		strList.add("Bird");
		strList.add(null);
		
		strList.sort(Comparator.comparing(String::length));
		strList.forEach(System.out::println);
	}

运行上面的代码,结果为:

在这里插入图片描述

说明:null 值是一个很头疼的问题,所以 Comparator接口也专门提供了处理null值得方法,它们都是对 null 值友好的方法(null-friendly)。

//null 值在前面。
//Returns a null-friendly comparator that considers null to be less than non-null.
 public static <T> Comparator<T> nullsFirst(Comparator<? super T> comparator) {
     return new Comparators.NullComparator<>(true, comparator);
 }

//null 值在后面。
//Returns a null-friendly comparator that considers null to be greater than non-null.
public static <T> Comparator<T> nullsLast(Comparator<? super T> comparator) {
    return new Comparators.NullComparator<>(false, comparator);
}

因此,对于含有null值的元素进行排序,可以这样做:

/**
 * 含有 null 值得元素排序
 * */
public static void nullValueSort() {
	List<String> strList = new ArrayList<>();
	strList.add("dog");
	strList.add("cat");
	strList.add(null);
	strList.add("Bird");
	strList.add(null);
	//我一开始以为是一个字符常量呢?但是一想不对劲,原来是一个静态常量比较器。
	//这个是 String 类的比较器:CASE_INSENSITIVE_ORDER
	//null 值在前排序
	strList.sort(Comparator.nullsFirst(String.CASE_INSENSITIVE_ORDER));
	strList.forEach(System.out::println);
	System.out.println("===================分隔符====================");
	//null 值在后排序
	strList.sort(Comparator.nullsLast(String.CASE_INSENSITIVE_ORDER));
	strList.forEach(System.out::println);
}

运行结果:

注:摆脱了,烦人的NullPointerException,哈哈。

在这里插入图片描述

接口中其它方法

reversed方法

in other words, it returns a comparator that imposes the reverse of the natural ordering on a collection of objects that implement the Comparable interface。

换言之,它返回一个比较器,该比较器对实现可比较接口的对象集合施加与自然顺序相反的顺序。

说明: 由于它是默认方法,所以必须由比较器对象本身来调用,正好可以实现逆序操作。可以在创建比较器后继续调用这个方法,就可以实现逆序了。但是要注意它调用的顺序,它和下面这个 reverseOrder 方法还是不一样的,下面这个方法是静态方法,可以通过类直接调用。注意,用法上的区别就是了。

 default Comparator<T> reversed() {
        return Collections.reverseOrder(this);
 }

reverseOrder 方法

public static <T extends Comparable<? super T>> Comparator<T> reverseOrder() {
    return Collections.reverseOrder();
}

如果直接使用这个方法,创建比较器对象的话,那么集合里面的元素必须使用 Comparable 接口。

static void reverseSort() {
	List<String> strList = new ArrayList<>();
	strList.add("dog");
	strList.add("cat");
	strList.add("Bird");
	
	strList.sort(Comparator.reverseOrder());
	strList.forEach(System.out::println);
}

注意:这里有一个很有趣的地方,这个方法Comparator.reverseOrder()无法使用方法引用改写:Comparator::reverseOrder,具体原因我看了,但是不是太理解,就不说了。

运行结果:

在这里插入图片描述

补充: 晚上思考了一下,结合别人的答案,这里其实也是不难理解的。自所以不能使用方法引用,是因为它根本就不是 lambda 表达式。Lambda 表达式需要依赖一个函数式接口,也就是 Comparator 接口。它的作用就是一个简化,所以它的需要的参数就是 int compare(T o1, T o2); 的方法中的参数。

所以,如果这样写的话,会报一个错误。

The type Comparator does not define reverseOrder(String, String) that is applicable here

strList.sort(Comparator::reverseOrder);

因此,上面这个写法就是错误的了。它并不能使用lambda的形式改写。

reverseOrder 和 reversed联合使用

	static void reverseSort() {
		List<String> strList = new ArrayList<>();
		strList.add("dog");
		strList.add("cat");
		strList.add("Bird");
		
		Comparator c = Comparator.reverseOrder().reversed();
		strList.sort(c);
		strList.forEach(System.out::println);
	}

说明:上面这个例子我不会添加泛型了,我无论怎么添加都是错误的,但是如果不添加泛型的话,那么编译就能通过了。但是这个东西的泛型似乎很奇怪,我也不太明白了,但是这个方法很有趣,反序的反序又是正序了。(这里存粹是娱乐一下,但是好像发现了好玩的东西。)

运行结果:

在这里插入图片描述

naturalOrder

定制排序里面居然有一个方法名叫做自然排序,这个方法感觉很有趣。但是使用的话,需要抑制一下 unchecked 警告。

@SuppressWarnings("unchecked")
public static <T extends Comparable<? super T>> Comparator<T> naturalOrder() {
    return (Comparator<T>) Comparators.NaturalOrderComparator.INSTANCE;
}

方法注释里面说明了:

@param  <T> the {@link Comparable} type of element to be compared。

参数必须是 Comparable类型的,即实现 Comparable 接口。

自然排序:

/**
 * Comparator 实现自然排序
 * */
@SuppressWarnings("unchecked")
static void lambda6(List<? extends Dog> dogList) {
	dogList.sort((Comparator<Dog>) Comparator.naturalOrder());
	dogList.forEach(System.out::println);
}

如果直接运行这个方法会产生问题,必须要先实现 Comparable接口才行,并重写 compareTo方法。

@Override
public int compareTo(Dog o) {
	return age-o.age;
}

运行结果:

在这里插入图片描述

说明:不太明白,安排这个方法的目的何在,感觉很奇怪。

总结

大致介绍了一下 Comparator 接口中的方法,并写了很多演示方法。写这篇博客的起因是我用到 Comparator 接口的时候,感觉似乎有很多丰富的方法,似乎怎么写都行(哈哈),所以干脆一劳永逸,抽时间看一看这个 Comparator 到底怎么写,发现确实是很有趣的。