typescript快速上手的进阶类型与技术

JavaScript/前端
297
0
0
2023-07-14
标签   TypeScript
目录
  • 类型别名
  • 字符串字面量类型
  • 元组
  • 枚举
  • 类的概念
  • TypeScript 中类的用法
  • 参数属性
  • readonly
  • 抽象类
  • 类的类型
  • 类与接口
  • 泛型
  • 泛型类
  • 泛型参数的默认类型
  • 声明合并
  • 函数的合并
  • 接口的合并

本文讲述了typescript开发的一些高级的类型与技术,算是对于基础知识点的补充,具体内容包括:比如元组、枚举类、接口、泛型相关概念等。虽说是进阶,但是内容不算多也并不难理解。

类型别名

类型别名用来给一个类型起个新名字。

type Name = string;
type NameResolver = () => string;
type NameOrResolver = Name | NameResolver;
function getName(n: NameOrResolver): Name {
    if (typeof n === 'string') {
        return n;
    } else {
        return n();
    }
}

上例中,我们使用 type 创建类型别名。

类型别名常用于联合类型。

字符串字面量类型

字符串字面量类型用来约束取值只能是某几个字符串中的一个。

type EventNames = 'click' | 'scroll' | 'mousemove';
function handleEvent(ele: Element, event: EventNames) {
    // do something
}

handleEvent(document.getElementById('hello'), 'scroll');  // 没问题
handleEvent(document.getElementById('world'), 'dblclick'); // 报错,event 不能为 'dblclick'

// index.ts(,47): error TS2345: Argument of type '"dblclick"' is not assignable to parameter of type 'EventNames'.

上例中,我们使用 type 定了一个字符串字面量类型 EventNames,它只能取三种字符串中的一种。

注意,类型别名与字符串字面量类型都是使用 type 进行定义。

元组

数组合并了相同类型的对象,而元组(Tuple)合并了不同类型的对象。

元组起源于函数编程语言(如 F#),这些语言中会频繁使用元组。

定义一对值分别为 string 和 number 的元组:

let tom: [string, number] = ['Tom',];

当赋值或访问一个已知索引的元素时,会得到正确的类型:

let tom: [string, number];
tom[] = 'Tom';
tom[] = 25;

tom[].slice(1);
tom[].toFixed(2);

也可以只赋值其中一项:

let tom: [string, number];
tom[] = 'Tom';

但是当直接对元组类型的变量进行初始化或者赋值的时候,需要提供所有元组类型中指定的项。

let tom: [string, number];
tom = ['Tom',];
let tom: [string, number];
tom = ['Tom'];

// Property '' is missing in type '[string]' but required in type '[string, number]'.

越界的元素

当添加越界的元素时,它的类型会被限制为元组中每个类型的联合类型:

let tom: [string, number];
tom = ['Tom',];
tom.push('male');
tom.push(true);

// Argument of type 'true' is not assignable to parameter of type 'string | number'.

枚举

枚举(Enum)类型用于取值被限定在一定范围内的场景,比如一周只能有七天,颜色限定为红绿蓝等。

枚举使用 enum 关键字来定义:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

枚举成员会被赋值为从 0 开始递增的数字,同时也会对枚举值到枚举名进行反向映射:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] ===); // true
console.log(Days["Mon"] ===); // true
console.log(Days["Tue"] ===); // true
console.log(Days["Sat"] ===); // true

console.log(Days[] === "Sun"); // true
console.log(Days[] === "Mon"); // true
console.log(Days[] === "Tue"); // true
console.log(Days[] === "Sat"); // true

事实上,上面的例子会被编译为:

var Days;
(function (Days) {
    Days[Days["Sun"] =] = "Sun";
    Days[Days["Mon"] =] = "Mon";
    Days[Days["Tue"] =] = "Tue";
    Days[Days["Wed"] =] = "Wed";
    Days[Days["Thu"] =] = "Thu";
    Days[Days["Fri"] =] = "Fri";
    Days[Days["Sat"] =] = "Sat";
})(Days || (Days = {}));

手动赋值

我们也可以给枚举项手动赋值:

enum Days {Sun =, Mon = 1, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] ===); // true
console.log(Days["Mon"] ===); // true
console.log(Days["Tue"] ===); // true
console.log(Days["Sat"] ===); // true

上面的例子中,未手动赋值的枚举项会接着上一个枚举项递增。

传统方法中,JavaScript 通过构造函数实现类的概念,通过原型链实现继承。而在 ES6 中,我们终于迎来了 class。

TypeScript 除了实现了所有 ES6 中的类的功能以外,还添加了一些新的用法。

类的概念

虽然 JavaScript 中有类的概念,但是可能大多数 JavaScript 程序员并不是非常熟悉类,这里对类相关的概念做一个简单的介绍。

  • 类(Class):定义了一件事物的抽象特点,包含它的属性和方法
  • 对象(Object):类的实例,通过 new 生成
  • 面向对象(OOP)的三大特性:封装、继承、多态
  • 封装(Encapsulation):将对数据的操作细节隐藏起来,只暴露对外的接口。外界调用端不需要(也不可能)知道细节,就能通过对外提供的接口来访问该对象,同时也保证了外界无法任意更改对象内部的数据
  • 继承(Inheritance):子类继承父类,子类除了拥有父类的所有特性外,还有一些更具体的特性
  • 多态(Polymorphism):由继承而产生了相关的不同的类,对同一个方法可以有不同的响应。比如 Cat 和 Dog 都继承自 Animal,但是分别实现了自己的 eat 方法。此时针对某一个实例,我们无需了解它是 Cat 还是 Dog,就可以直接调用 eat 方法,程序会自动判断出来应该如何执行 eat
  • 存取器(getter & setter):用以改变属性的读取和赋值行为
  • 修饰符(Modifiers):修饰符是一些关键字,用于限定成员或类型的性质。比如 public 表示公有属性或方法
  • 抽象类(Abstract Class):抽象类是供其他类继承的基类,抽象类不允许被实例化。抽象类中的抽象方法必须在子类中被实现
  • 接口(Interfaces):不同类之间公有的属性或方法,可以抽象成一个接口。接口可以被类实现(implements)。一个类只能继承自另一个类,但是可以实现多个接口

TypeScript 中类的用法

public private 和 protected

TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 public、private 和 protected。

  • public 修饰的属性或方法是公有的,可以在任何地方被访问到,默认所有的属性和方法都是 public 的
  • private 修饰的属性或方法是私有的,不能在声明它的类的外部访问
  • protected 修饰的属性或方法是受保护的,它和 private 类似,区别是它在子类中也是允许被访问的

下面举一些例子:

class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';
console.log(a.name); // Tom

参数属性

修饰符和readonly还可以使用在构造函数参数中,等同于类中定义该属性同时给该属性赋值,使代码更简洁。

class Animal {
  // public name: string;
  public constructor(public name) {
    // this.name = name;
  }
}

readonly

只读属性关键字,只允许出现在属性声明或索引签名或构造函数中。

class Animal {
  readonly name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';

// index.ts(,3): TS2540: Cannot assign to 'name' because it is a read-only property.

注意如果 readonly 和其他访问修饰符同时存在的话,需要写在其后面。

class Animal {
  // public readonly name;
  public constructor(public readonly name) {
    // this.name = name;
  }
}

抽象类

abstract 用于定义抽象类和其中的抽象方法。

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

class Cat extends Animal {
  public sayHi() {
    console.log(`Meow, My name is ${this.name}`);
  }
}

let cat = new Cat('Tom');

上面的例子中,我们实现了抽象方法 sayHi,编译通过了。

需要注意的是,即使是抽象方法,TypeScript 的编译结果中,仍然会存在这个类,上面的代码的编译结果是:

var __extends =
  (this && this.__extends) ||
  function (d, b) {
    for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
    function __() {
      this.constructor = d;
    }
    d.prototype = b === null ? Object.create(b) : ((__.prototype = b.prototype), new __());
  };
var Animal = (function () {
  function Animal(name) {
    this.name = name;
  }
  return Animal;
})();
var Cat = (function (_super) {
  __extends(Cat, _super);
  function Cat() {
    _super.apply(this, arguments);
  }
  Cat.prototype.sayHi = function () {
    console.log('Meow, My name is ' + this.name);
  };
  return Cat;
})(Animal);
var cat = new Cat('Tom');

类的类型

给类加上 TypeScript 的类型很简单,与接口类似:

class Animal {
  name: string;
  constructor(name: string) {
    this.name = name;
  }
  sayHi(): string {
    return `My name is ${this.name}`;
  }
}

let a: Animal = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack

类与接口

实现(implements)是面向对象中的一个重要概念。一般来讲,一个类只能继承自另一个类,有时候不同类之间可以有一些共有的特性,这时候就可以把特性提取成接口(interfaces),用 implements 关键字来实现。这个特性大大提高了面向对象的灵活性。

举例来说,门是一个类,防盗门是门的子类。如果防盗门有一个报警器的功能,我们可以简单的给防盗门添加一个报警方法。这时候如果有另一个类,车,也有报警器的功能,就可以考虑把报警器提取出来,作为一个接口,防盗门和车都去实现它:

interface Alarm {
    alert(): void;
}

class Door {
}

class SecurityDoor extends Door implements Alarm {
    alert() {
        console.log('SecurityDoor alert');
    }
}

class Car implements Alarm {
    alert() {
        console.log('Car alert');
    }
}

一个类可以实现多个接口:

interface Alarm {
    alert(): void;
}

interface Light {
    lightOn(): void;
    lightOff(): void;
}

class Car implements Alarm, Light {
    alert() {
        console.log('Car alert');
    }
    lightOn() {
        console.log('Car light on');
    }
    lightOff() {
        console.log('Car light off');
    }
}

上例中,Car 实现了 Alarm 和 Light 接口,既能报警,也能开关车灯。

泛型

泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性。

首先,我们来实现一个函数 createArray,它可以创建一个指定长度的数组,同时将每一项都填充一个默认值:

function createArray(length: number, value: any): Array<any> {
    let result = [];
    for (let i =; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray(, 'x'); // ['x', 'x', 'x']

这段代码编译不会报错,但是一个显而易见的缺陷是,它并没有准确的定义返回值的类型:

Array<any> 允许数组的每一项都为任意类型。但是我们预期的是,数组中每一项都应该是输入的 value 的类型。

这时候,泛型就派上用场了:

function createArray<T>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i =; i < length; i++) {
        result[i] = value;
    }
    return result;
}

createArray<string>(, 'x'); // ['x', 'x', 'x']

上例中,我们在函数名后添加了 <T>,其中 T 用来指代任意输入的类型,在后面的输入 value: T 和输出 Array<T> 中即可使用了。

泛型类

与泛型接口类似,泛型也可以用于类的类型定义中:

class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue =;
myGenericNumber.add = function(x, y) { return x + y; };

泛型参数的默认类型

在 TypeScript 2.3 以后,我们可以为泛型中的类型参数指定默认类型。当使用泛型时没有在代码中直接指定类型参数,从实际值参数中也无法推测出时,这个默认类型就会起作用。

function createArray<T = string>(length: number, value: T): Array<T> {
    let result: T[] = [];
    for (let i =; i < length; i++) {
        result[i] = value;
    }
    return result;
}

声明合并

如果定义了两个相同名字的函数、接口或类,那么它们会合并成一个类型:

函数的合并

我们可以使用重载定义多个函数类型:

function reverse(x: number): number;
function reverse(x: string): string;
function reverse(x: number | string): number | string {
    if (typeof x === 'number') {
        return Number(x.toString().split('').reverse().join(''));
    } else if (typeof x === 'string') {
        return x.split('').reverse().join('');
    }
}

接口的合并

接口中的属性在合并时会简单的合并到一个接口中:

interface Alarm {
    price: number;
}
interface Alarm {
    weight: number;
}

相当于:

interface Alarm {
    price: number;
    weight: number;
}