一文带你深入了解Java TreeMap

Java
277
0
0
2023-02-14
目录
  • 概述
  • TreeMap介绍
  • 构造方法
  • 关键方法
  • 使用案例
  • 核心机制
  • 实现原理
  • 源码解析
  • 成员变量
  • 查找get方法
  • 插入put方法
  • 删除remove方法

概述

TreeMap是Map家族中的一员,也是用来存放key-value键值对的。平时在工作中使用的可能并不多,它最大的特点是遍历时是有顺序的,根据key的排序规则来,那么它具体是如何使用,又是怎么实现的呢?本文基于jdk8做一个讲解。

TreeMap介绍

TreeMap是一个基于key有序的key value散列表。

  • map根据其键的自然顺序排序,或者根据map创建时提供的Comparator排序
  • 不是线程安全的
  • key 不可以存入null
  • 底层是基于红黑树实现的

以上是TreeMap的类结构图:

  • 实现了NavigableMap接口,NavigableMap又实现了Map接口,提供了导航相关的方法。
  • 继承了AbstractMap,该方法实现Map操作的骨干逻辑。
  • 实现了Cloneable接口,标记该类支持clone方法复制
  • 实现了Serializable接口,标记该类支持序列化

构造方法

TreeMap()

说明:使用键的自然排序构造一个新的空树映射。

TreeMap(Comparator<? super K> comparator)

说明:构造一个新的空树映射,根据给定的比较器排序。

TreeMap(Map<? extends K,? extends V> m)

说明:构造一个新的树映射,包含与给定映射相同的映射,按照键的自然顺序排序。

TreeMap(SortedMap<K,? extends V> m)

说明:构造一个新的树映射,包含相同的映射,并使用与指定排序映射相同的顺序。

关键方法

这边主要讲解下NavigableMap和SortedMap提供的一些方法,Map相关的方法大家应该都很熟悉了。

SortedMap接口:

Comparator<? super K> comparator()

返回用于排序此映射中的键的比较器,如果此映射使用其键的自然排序,则返回null。

Set<Map.Entry<K,V>> entrySet()

返回此映射中包含的映射的Set视图。

K firstKey()

返回当前映射中的第一个(最低)键。

K lastKey()

返回当前映射中的最后(最高)键。

NavigableMap接口:

Map.Entry<K,V> ceilingEntry(K key)

返回与大于或等于给定键的最小键相关联的键值映射,如果没有这样的键则返回null。

K ceilingKey(K key)

返回大于或等于给定键的最小键,如果没有这样的键,则返回null。

NavigableMap<K,V> descendingMap()

返回此映射中包含的映射的倒序视图。

Map.Entry<K,V> firstEntry()

返回与该映射中最小的键关联的键值映射,如果映射为空,则返回null。

Map.Entry<K,V> floorEntry(K key)

返回与小于或等于给定键的最大键相关联的键值映射,如果没有这样的键则返回null。

SortedMap<K,V> headMap(K toKey)

返回该映射中键严格小于toKey的部分的视图。

Map.Entry<K,V> higherEntry(K key)

返回与严格大于给定键的最小键关联的键值映射,如果没有这样的键,则返回null。

Map.Entry<K,V> lastEntry()

返回与此映射中最大键关联的键值映射,如果映射为空,则返回null。

Map.Entry<K,V> lowerEntry(K key)

返回与严格小于给定键的最大键关联的键值映射,如果没有这样的键,则返回null。

Map.Entry<K,V> pollFirstEntry()

删除并返回与该映射中最小的键关联的键值映射,如果映射为空,则返回null。

Map.Entry<K,V> pollLastEntry()

删除并返回与此映射中最大键关联的键值映射,如果映射为空,则返回null。

SortedMap<K,V> subMap(K fromKey, K toKey)

返回该映射中键范围从fromKey(包含)到toKey(独占)的部分的视图。

SortedMap<K,V> tailMap(K fromKey)

返回该映射中键大于或等于fromKey的部分的视图。

使用案例

验证顺序性

@Test
public void test1() {
    Map<Integer, String> treeMap = new TreeMap<>();
    treeMap.put(16, "a");
    treeMap.put(1, "b");
    treeMap.put(4, "c");
    treeMap.put(3, "d");
    treeMap.put(8, "e");
    // 遍历
    System.out.println("默认排序:");
    treeMap.forEach((key, value) -> {
        System.out.println("key: " + key + ", value: " + value);
    });

    // 构造方法传入比较器
    Map<Integer, String> tree2Map = new TreeMap<>((o1, o2) -> o2 - o1);
    tree2Map.put(16, "a");
    tree2Map.put(1, "b");
    tree2Map.put(4, "c");
    tree2Map.put(3, "d");
    tree2Map.put(8, "e");
    // 遍历
    System.out.println("倒序排序:");
    tree2Map.forEach((key, value) -> {
        System.out.println("key: " + key + ", value: " + value);
    });
}

运行结果:

验证不能存储null

@Test
    public void test2() {
        Map<Integer, String> treeMap = new TreeMap<>();
        treeMap.put(null, "a");
    }

运行结果:

验证NavigableMap相关方法

@Test
    public void test3() {
        NavigableMap<Integer, String> treeMap = new TreeMap<>();
        treeMap.put(16, "a");
        treeMap.put(1, "b");
        treeMap.put(4, "c");
        treeMap.put(3, "d");
        treeMap.put(8, "e");

        // 获取大于等于5的key
        Integer ceilingKey = treeMap.ceilingKey(5);
        System.out.println("ceilingKey 5 is " + ceilingKey);

        // 获取最大的key
        Integer lastKey = treeMap.lastKey();
        System.out.println("lastKey is " + lastKey);
    }

运行结果:

核心机制

实现原理

大家有想过TreeMap的底层是怎么实现的吗,是如何维护key的顺序呢?答案就是基于红黑树实现的。

那什么是红黑树呢?我们在这里简单的认识一下,了解一下红黑树的特点:红黑树是一颗自平衡的排序二叉树。我们就先从二叉树开始说起。

二叉树

二叉树很容易理解,就是一棵树分俩叉。

上面这颗就是一颗最普通的二叉树。但是你会发现看起来不那么美观,因为你以H为根节点,发现左右两边高低不平衡,高度相差达到了2。于是出现了平衡二叉树,使得左右两边高低差不多。

平衡二叉树

这下子应该能看到,不管是从任何一个字母为根节点,左右两边的深度差不了2,最多是1。这就是平衡二叉树。不过好景不长,有一天,突然要把字母变成数字,还要保持这种特性怎么办呢?于是又出现了平衡二叉排序树。

平衡二叉排序树

不管是从长相(平衡),还是从规律(排序)感觉这棵树超级完美。但是有一个问题,那就是在增加删除节点的时候,你要时刻去让这棵树保持平衡,需要做太多的工作了,旋转的次数超级多,于是乎出现了红黑树。

红黑树

这就是传说中的红黑树,和平衡二叉排序树的区别就是每个节点涂上了颜色,他有下列五条性质:

  • 每个节点都只能是红色或者黑色
  • 根节点是黑色
  • 每个叶节点(NIL节点,空节点)是黑色的。
  • 如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。
  • 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

这些性质有什么优点呢?就是插入效率超级高。因为在插入一个元素的时候,最多只需三次旋转,O(1)的复杂度,但是有一点需要说明他的查询效率略微逊色于平衡二叉树,因为他比平衡二叉树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的avl树最多多一次比较。如何去旋转呢?如下图所示。

首先是左旋:

然后是右旋:

红黑树更详细的内容可以参考文章:Java红黑树的数据结构与算法解析

源码解析

成员变量

//这是一个比较器,方便插入查找元素等操作
private final Comparator<? super K> comparator;
//红黑树的根节点:每个节点是一个Entry
private transient Entry<K,V> root;
//集合元素数量
private transient int size = 0;
//集合修改的记录
private transient int modCount = 0;
  • comparator是一个排序器,作为key的排序规则
  • root是红黑树的根节点,说明的确底层用的红黑树作为数据结构。
static final class Entry<K,V> implements Map.Entry<K,V> {
    K key;
    V value;
 	//左子树
    Entry<K,V> left;
 	//右子树
    Entry<K,V> right;
 	//父节点
    Entry<K,V> parent;
 	//每个节点的颜色:红黑树属性。
    boolean color = BLACK;
    Entry(K key, V value, Entry<K,V> parent) {
        this.key = key;
        this.value = value;
        this.parent = parent;
    }
    public K getKey() {
        return key;
    }
    public V getValue() {
        return value;
    }
    public V setValue(V value) {
        V oldValue = this.value;
        this.value = value;
        return oldValue;
    }

    public boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry<?,?> e = (Map.Entry<?,?>)o;

        return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
    }

    public int hashCode() {
        int keyHash = (key==null ? 0 : key.hashCode());
        int valueHash = (value==null ? 0 : value.hashCode());
        return keyHash ^ valueHash;
    }

    public String toString() {
        return key + "=" + value;
    }
}

查找get方法

TreeMap基于红黑树实现,而红黑树是一种自平衡二叉查找树,所以 TreeMap 的查找操作流程和二叉查找树一致。二叉树的查找流程是这样的,先将目标值和根节点的值进行比较,如果目标值小于根节点的值,则再和根节点的左孩子进行比较。如果目标值大于根节点的值,则继续和根节点的右孩子比较。在查找过程中,如果目标值和二叉树中的某个节点值相等,则返回 true,否则返回 false。TreeMap 查找和此类似,只不过在 TreeMap 中,节点(Entry)存储的是键值对<k,v>。在查找过程中,比较的是键的大小,返回的是值,如果没找到,则返回null。TreeMap 中的查找方法是get。

public V get(Object key) {
        //调用 getEntry方法查找
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p. value);
}

final Entry<K,V> getEntry(Object key) {
    / 如果比较器为空,只是用key作为比较器查询
    if (comparator != null) 
        return getEntryUsingComparator(key);
    if (key == null)
        throw new NullPointerException();
    Comparable<? super K> k = (Comparable<? super K>) key;
    // 取得root节点
    Entry<K,V> p = root;
   //核心来了:从root节点开始查找,根据比较器判断是在左子树还是右子树
    while (p != null) {
        int cmp = k.compareTo(p.key );
        if (cmp < 0)
            p = p. left;
        else if (cmp > 0)
            p = p. right;
        else
           return p;
    }
}

插入put方法

我们来看下关键的插入方法,在插入时候是如何维护key的。

public V put(K key, V value) {
    Entry<K,V> t = root;
   // 1.如果根节点为 null,将新节点设为根节点
    if (t == null) {
        compare(key, key); // type (and possibly null) check

        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
  //如果root不为null,说明已存在元素 
    int cmp;
    Entry<K,V> parent;
    // split comparator and comparable paths
    Comparator<? super K> cpr = comparator;
//如果比较器不为null 则使用比较器
    if (cpr != null) {
        //找到元素的插入位置
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
             //当前key小于节点key 向左子树查找
            if (cmp < 0)
                t = t.left;
                //当前key大于节点key 向右子树查找
            else if (cmp > 0)
                t = t.right;
            else
                //相等的情况下 直接更新节点值
                return t.setValue(value);
        } while (t != null);
    }
        //如果比较器为null 则使用默认比较器
    else {
        //如果key为null  则抛出异常
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
         //找到元素的插入位置
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }
    Entry<K,V> e = new Entry<>(key, value, parent);
  //根据比较结果决定插入到左子树还是右子树
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
//保持红黑树性质,进行红黑树的旋转等操作
    fixAfterInsertion(e);
    size++;
    modCount++;
    return null;
}

比较关键的就是fixAfterInsertion方法, 看懂这个方法需要你对红黑树的机制比较了解。

private void fixAfterInsertion(Entry<K,V> x) {
    // 将新插入节点的颜色设置为红色
    x. color = RED;
    // while循环,保证新插入节点x不是根节点或者新插入节点x的父节点不是红色(这两种情况不需要调整)
    while (x != null && x != root && x. parent.color == RED) {
        // 如果新插入节点x的父节点是祖父节点的左孩子
        if (parentOf(x) == leftOf(parentOf (parentOf(x)))) {
            // 取得新插入节点x的叔叔节点
            Entry<K,V> y = rightOf(parentOf (parentOf(x)));
            // 如果新插入x的父节点是红色
            if (colorOf(y) == RED) {
                // 将x的父节点设置为黑色
                setColor(parentOf (x), BLACK);
                // 将x的叔叔节点设置为黑色
                setColor(y, BLACK);
                // 将x的祖父节点设置为红色
                setColor(parentOf (parentOf(x)), RED);
                // 将x指向祖父节点,如果x的祖父节点的父节点是红色,按照上面的步奏继续循环
                x = parentOf(parentOf (x));
            } else {
                // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的右孩子
                if (x == rightOf( parentOf(x))) {
                    // 左旋父节点
                    x = parentOf(x);
                    rotateLeft(x);
                }
                // 如果新插入x的叔叔节点是黑色或缺少,且x的父节点是祖父节点的左孩子
                // 将x的父节点设置为黑色
                setColor(parentOf (x), BLACK);
                // 将x的祖父节点设置为红色
                setColor(parentOf (parentOf(x)), RED);
                // 右旋x的祖父节点
                rotateRight( parentOf(parentOf (x)));
            }
        } else { // 如果新插入节点x的父节点是祖父节点的右孩子和上面的相似
            Entry<K,V> y = leftOf(parentOf (parentOf(x)));
            if (colorOf(y) == RED) {
                setColor(parentOf (x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf (parentOf(x)), RED);
                x = parentOf(parentOf (x));
            } else {
                if (x == leftOf( parentOf(x))) {
                    x = parentOf(x);
                    rotateRight(x);
                }
                setColor(parentOf (x), BLACK);
                setColor(parentOf (parentOf(x)), RED);
                rotateLeft( parentOf(parentOf (x)));
            }
        }
    }
    // 最后将根节点设置为黑色
    root.color = BLACK;
}

删除remove方法

删除remove是最复杂的方法。

public V remove(Object key) {
    // 根据key查找到对应的节点对象
    Entry<K,V> p = getEntry(key);
    if (p == null)
        return null;

    // 记录key对应的value,供返回使用
    V oldValue = p. value;
    // 删除节点
    deleteEntry(p);
    return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
    modCount++;
    //元素个数减一
    size--;
    // 如果被删除的节点p的左孩子和右孩子都不为空,则查找其替代节
    if (p.left != null && p. right != null) {
        // 查找p的替代节点
        Entry<K,V> s = successor (p);
        p. key = s.key ;
        p. value = s.value ;
        p = s;
    }
    Entry<K,V> replacement = (p. left != null ? p.left : p. right);
    if (replacement != null) { 
        // 将p的父节点拷贝给替代节点
        replacement. parent = p.parent ;
        // 如果替代节点p的父节点为空,也就是p为跟节点,则将replacement设置为根节点
        if (p.parent == null)
            root = replacement;
        // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的左孩子
        else if (p == p.parent. left)
            p. parent.left   = replacement;
        // 如果替代节点p是其父节点的左孩子,则将replacement设置为其父节点的右孩子
        else
            p. parent.right = replacement;
        // 将替代节点p的left、right、parent的指针都指向空
        p. left = p.right = p.parent = null;
        // 如果替代节点p的颜色是黑色,则需要调整红黑树以保持其平衡
        if (p.color == BLACK)
            fixAfterDeletion(replacement);
    } else if (p.parent == null) { // return if we are the only node.
        // 如果要替代节点p没有父节点,代表p为根节点,直接删除即可
        root = null;
    } else {
        // 如果p的颜色是黑色,则调整红黑树
        if (p.color == BLACK)
            fixAfterDeletion(p);
        // 下面删除替代节点p
        if (p.parent != null) {
            // 解除p的父节点对p的引用
            if (p == p.parent .left)
                p. parent.left = null;
            else if (p == p.parent. right)
                p. parent.right = null;
            // 解除p对p父节点的引用
            p. parent = null;
        }
    }
}

最终还是落到了对红黑树节点的删除上,需要维持红黑树的特性,做一系列的工作。