一文带你剖析Redisson分布式锁的原理

Java
293
0
0
2023-06-22
标签   Redis
目录
  • 加锁
  • 锁续命(自旋)
  • 锁订阅及锁等待
  • 解锁
  • 总结

相信使用过redis的,或者正在做分布式开发的童鞋都知道redisson组件,它的功能很多,但我们使用最频繁的应该还是它的分布式锁功能,少量的代码,却实现了加锁、锁续命(看门狗)、锁订阅、解锁、锁等待(自旋)等功能,我们来看看都是如何实现的。

加锁

//获取锁对象
RLock redissonLock = redisson.getLock(lockKey);
//加分布式锁
redissonLock.lock();

根据redissonLock.lock()方法跟踪到具体的private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId)方法,真正获取加锁的逻辑是在tryAcquireAsync该方法中调用的tryLockInnerAsync()方法,看看这个方法是怎么实现的?

<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
    internalLockLeaseTime = unit.toMillis(leaseTime);

    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
               // 判断是否存在分布式锁,getName()也就是KEYS[],也就是锁key名                     
              "if (redis.call('exists', KEYS[]) == 0) then " +
               // 加锁,执行hset 锁key名                           
                  "redis.call('hset', KEYS[], ARGV[2], 1); " +
               // 设置过期时间                           
                  "redis.call('pexpire', KEYS[], ARGV[1]); " +
                  "return nil; " +
              "end; " +
               // 这个分支是redisson的重入锁逻辑,锁还在,锁计数+,重新设置过期时长                 
              "if (redis.call('hexists', KEYS[], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              // 返回锁的剩余过期时长                            
              "return redis.call('pttl', KEYS[]);",
                Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
}

发现底层是结合lua脚本实现了加锁逻辑。

为什么底层结合了Lua脚本?Redis是在2.6推出了脚本功能,允许开发者使用Lua语言编写脚本传到redis执行。使用脚本的好处如下:

1、减少网络开销:本来5次网络请求的操作,可以用一个请求完成,原先5次请求的逻辑,可以一次性放到redis中执行,较少了网络往返时延。这点跟管道有点类似

2、原子操作:Redis会将整个脚本作为一个整体执行,中间不会被其他命令插入。管道不是原子的,不过

redis的批量操作命令(类似mset)是原子的

也就意味着虽然脚本中有多条redis指令,那即使有多条线程并发执行,在同一时刻也只有一个线程能够执行这段逻辑,等这段逻辑执行完,分布式锁也就获取到了,其它线程再进来就获取不到分布式锁了。

锁续命(自旋)

大家都听过锁续命,肯定也知道这里涉及到看门狗的概念。在调用tryLockInnerAsync()方法时,第一个参数是commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()也就是默认的看门狗过期时间是private long lockWatchdogTimeout = 30 * 1000毫秒。

private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
    if (leaseTime != -) {
        return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
    }
    RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
    // 添加监听器,判断获取锁是否成功,成功的话,添加定时任务:定期更新锁过期时间
    ttlRemainingFuture.addListener(new FutureListener<Long>() {
        @Override
        public void operationComplete(Future<Long> future) throws Exception {
            if (!future.isSuccess()) {
                return;
            }
            // 根据tryLockInnerAsync方法,加锁成功,return nil 也就是null
            Long ttlRemaining = future.getNow();
            // lock acquired
            if (ttlRemaining == null) {
                // 添加定时任务:定期更新锁过期时间
                scheduleExpirationRenewal(threadId);
            }
        }
    });
    return ttlRemainingFuture;
}

当线程获取到锁后,会进入if (ttlRemaining == null)分支,调用定期更新锁过期时间scheduleExpirationRenewal方法,我们看看该方法实现:

private void scheduleExpirationRenewal(final long threadId) {
    if (expirationRenewalMap.containsKey(getEntryName())) {
        return;
    }

    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            
            RFuture<Boolean> future = commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
                    // 检测KEYS[]锁是否还在,在的话再次设置过期时间                               
                    "if (redis.call('hexists', KEYS[], ARGV[2]) == 1) then " +
                        "redis.call('pexpire', KEYS[], ARGV[1]); " +
                        "return; " +
                    "end; " +
                    "return;",
                      Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));
            
            future.addListener(new FutureListener<Boolean>() {
                @Override
                public void operationComplete(Future<Boolean> future) throws Exception {
                    expirationRenewalMap.remove(getEntryName());
                    if (!future.isSuccess()) {
                        log.error("Can't update lock " + getName() + " expiration", future.cause());
                        return;
                    }
                    // 通过上面lua脚本执行后会返回,也就true,再次调用更新过期时间进行续期
                    if (future.getNow()) {
                        // reschedule itself
                        scheduleExpirationRenewal(threadId);
                    }
                }
            });
        }
        // 延迟 internalLockLeaseTime /再执行续命
    }, internalLockLeaseTime /, TimeUnit.MILLISECONDS);

    if (expirationRenewalMap.putIfAbsent(getEntryName(), task) != null) {
        task.cancel();
    }
}

发现scheduleExpirationRenewal方法只是用了Timeout作为任务,并没有使用java的Timer()之类的定时器,而是在Timeout任务run()方法中定义了RFuture对象,通过给RFuture对象设置listener,在listener中通过Lua脚本执行结果进行判断是否还需要进行续期。通过这样的方式来给分布式锁进行续期。

这种方式实现定时更新确实很巧妙,定期时间很灵活。

锁订阅及锁等待

锁订阅是针对那些没有获取到分布式锁的线程而言的。来看看整个获取锁的方法:

public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
        long threadId = Thread.currentThread().getId();
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired,获取到锁,直接退出
        if (ttl == null) {
            return;
        }
		// 没有获取到锁,进行订阅
        RFuture<RedissonLockEntry> future = subscribe(threadId);
        commandExecutor.syncSubscription(future);

        try {
            while (true) {
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    break;
                }

                // waiting for message
                if (ttl >=) {
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    getEntry(threadId).getLatch().acquire();
                }
            }
        } finally {
            unsubscribe(future, threadId);
        }
//        get(lockAsync(leaseTime, unit));
    }

当第一个线程获取到锁后,会在if (ttl == null)分支进行返回,第二个及以后的线程进来在没获取到锁时,只能接着走下面的逻辑,进行锁的订阅。

接着进入到一个while循环,首先还是会进行一次尝试获取锁(万一此时第一个线程已经释放锁了呢),通过tryAcquire(leaseTime, unit, threadId)方法,如果没有获取到锁的话,会返回锁的剩余过期时间,如果剩余过期时间大于0,则当前线程通过Semaphore信号号,将当前线程阻塞,底层执行LockSupport.parkNanos(this, nanosTimeout)线程挂起剩余过期时间后,会自动进行唤醒,再次执行tryAcquire尝试获取锁。所有没有获取到锁的线程都会执行这个流程。

一定要等待剩余过期时间后才唤醒吗?

假设线程一获取到锁,过期时间默认为30s,当前执行业务逻辑已经过了5s,那其他线程走到这里,则需要等待25s后才行进行唤醒,那万一线程一执行业务逻辑只要10s,那其他线程还需要等待20s吗?这样岂不是导致效率很低?

答案是否定的,详细看解锁逻辑。

解锁

解锁:redissonLock.unlock();

我们来看看具体的解锁逻辑:

protected RFuture<Boolean> unlockInnerAsync(long threadId) {
    return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
            // 锁不存在,发布unlockMessage解锁消息,通知其他等待线程                              
            "if (redis.call('exists', KEYS[]) == 0) then " +
                "redis.call('publish', KEYS[], ARGV[1]); " +
                "return; " +
            "end;" +
            // 不存在该锁,异常捕捉                              
            "if (redis.call('hexists', KEYS[], ARGV[3]) == 0) then " +
                "return nil;" +
            "end; " +
            // redisson可重入锁计数-,依旧>0,则重新设置过期时间                              
            "local counter = redis.call('hincrby', KEYS[], ARGV[3], -1); " +
            "if (counter >) then " +
                "redis.call('pexpire', KEYS[], ARGV[2]); " +
                "return; " +
            // redis删除锁,发布unlockMessage解锁消息,通知其他等待线程                         
            "else " +
                "redis.call('del', KEYS[]); " +
                "redis.call('publish', KEYS[], ARGV[1]); " +
                "return; "+
            "end; " +
            "return nil;",
            Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));

}

发现解锁逻辑底层也是用了一个lua脚本实现。具体的说明可以看代码注释,删除锁后,并发布解锁消息,通知到其它线程,也就意味着不会其它等待的线程一直等待。

Semophore信号量的订阅中有个onMessage方法,

protected void onMessage(RedissonLockEntry value, Long message) {
    // 唤醒线程
    value.getLatch().release(message.intValue());
    
    while (true) {
        Runnable runnableToExecute = null;
        synchronized (value) {
            Runnable runnable = value.getListeners().poll();
            if (runnable != null) {
                if (value.getLatch().tryAcquire()) {
                    runnableToExecute = runnable;
                } else {
                    value.addListener(runnable);
                }
            }
        }
        
        if (runnableToExecute != null) {
            runnableToExecute.run();
        } else {
            return;
        }
    }
}

解锁后通过if (opStatus)分支取消锁续期逻辑。

总结

总的来说,可以借助一张图加深理解:

分布式锁的整体实现很巧妙,借助lua脚本的原子性,实现了很多功能,当然redisson还有其它很多功能,比如为了解决主从集群中的异步复制会导致锁丢失问题,引入了redlock机制,还有分布式下的可重入锁等。