目录
- 一、概念
- 二、基础操作
- 1.查找find
- 2.插入Insert
- 3.中序遍历InOrder
- 4.删除erase
- 三、递归写法
- 1.递归查找
- 2.递归插入
- 3.递归删除
- 四、应用
- 五、题目练习
一、概念
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
左<根<右
它的左右子树也分别为二叉搜索树
之所以又叫二叉排序树,是因为二叉搜索树中序遍历的结果是有序的
二、基础操作
1.查找find
基于二叉搜索树的特点,查找一个数并不难,若根节点不为空的情况下:
若根节点key==查找key,直接返回true
若根节点key>查找key,那得找到更小的,则往左子树查找
若根节点key<查找key,那得找到更大的,则往右子树查找
最多查找高度次,走到空为止,如果还没找到,则说明这个值不存在,返回false
bool find(const K& key) | |
{ | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
cur = cur->_left; | |
} | |
else | |
{ | |
return true; | |
} | |
} | |
return false; | |
} |
2.插入Insert
1.树为空,则直接插入,新增节点,直接插入root指针即可
2.树不为空,按二叉搜索树性质查找插入位置,插入新节点。
(注意:不能插入重复的元素,并且每次插入都是要定位到空节点的位置;我们先定义一个 cur从root开始,比较元素的大小:若插入的元素比当前位置元素小就往左走,比当前位置元素大就往右走,直到为空,相等就不能插入了;同时定义一个parent去记录当前 cur的前一个位置,最后判断cur是parent的左子树还是右子树即可)
bool Insert(const K& key) | |
{ | |
if (_root == nullptr) | |
{ | |
_root = new Node(key); | |
return true; | |
} | |
Node* parent = nullptr; | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
parent = cur; | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
parent = cur; | |
cur = cur->_left; | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
cur = new Node(key); | |
if (parent->_key < key) | |
{ | |
parent->_right = cur; | |
} | |
else | |
{ | |
parent->_left = cur; | |
} | |
return true; | |
} |
3.中序遍历InOrder
递归走起,同时由于_root是私有的,外部不能访问,我们可以在类内给中序提供一个方法即可,就不需要传参了
void InOrder() | |
{ | |
_InOrder(_root); | |
cout << endl; | |
} | |
private: | |
void _InOrder(Node* root) | |
{ | |
if (root == nullptr) | |
{ | |
return; | |
} | |
_InOrder(root->_left); | |
cout << root->_key << " "; | |
_InOrder(root->_right); | |
} | |
Node* _root = nullptr; |
4.删除erase
删除的情况比较多:
- 左右都为空:叶子结点,直接置空并链接到空指针
- 左为空或右为空:进行托孤:只有一个子节点,删除自己本身,并链接子节点和父节点(注意:如果父亲是空,也就是要删除根结点,此时根节点没有父亲,单独判断一下)
- 左右都不为空:找出替换节点:右子树最小节点**、**左子树最大节点。替换节点可以作为交换和删除进行交换,交换后删除交换节点、交换节点要么没有孩子,要么只有一个孩子可以直接删除
但是左右都为空可以纳入到左为空或右为空的情况
注意:
代码实现:
bool Erase(const K& key) | |
{ | |
Node* parent = nullptr; | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
parent = cur; | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
parent = cur; | |
cur = cur->_left; | |
} | |
else | |
{ | |
//左为空 | |
if (cur->_left == nullptr) | |
{ | |
//删除根结点 | |
//if(parent==nullptr) | |
if (cur == _root) | |
{ | |
_root = cur->_right; | |
} | |
else | |
{ | |
if (parent->_left == cur) | |
{ | |
parent->_left = cur->_right; | |
} | |
else | |
{ | |
parent->_right = cur->_right; | |
} | |
} | |
delete cur; | |
} | |
//右为空 | |
else if (cur->_right == nullptr) | |
{ | |
if (cur == _root) | |
{ | |
_root = cur->_left; | |
} | |
else | |
{ | |
if (parent->_left == cur) | |
{ | |
parent->_left = cur->_left; | |
} | |
else | |
{ | |
parent->_right = cur->_left; | |
} | |
} | |
delete cur; | |
} | |
//左右都不为空,找替换节点 | |
else | |
{ | |
//不能初始化为nullptr | |
Node* parent = cur; | |
//右子树最小节点 | |
Node* minRight = cur->_right; | |
while (minRight->_left) | |
{ | |
parent = minRight; | |
minRight = minRight->_left; | |
} | |
cur->_key = minRight->_key; | |
//判断minRight是父亲的左还是右 | |
if (minRight == parent->_left) | |
{ | |
parent->_left = minRight->_right; | |
} | |
else | |
{ | |
parent->_right = minRight->_right; | |
} | |
delete minRight; | |
} | |
return true; | |
} | |
} | |
return false; | |
} |
三、递归写法
1.递归查找
这个比较简单:苏醒把,递归时刻
bool _FindR(Node* root, const K& key) | |
{ | |
if (root == nullptr) return false; | |
else if (root->_key < key) return _FindR(root->_right, key); | |
else if (root->_key > key) return _FindR(root->_left, key); | |
else return true; | |
} |
2.递归插入
最大的问题是插入之后跟父亲进行链接,如果直接给root是不可以的,因为root是栈帧里面的参数,只是局部变量:加上引用
bool _InsertR(Node*& root, const K& key) | |
{ | |
if (root == nullptr) | |
{ | |
root = new Node(key); | |
return true; | |
} | |
else if (root->_key < key) | |
return _InsertR(root->_right, key); | |
else if (root->_key > key) | |
return _InsertR(root->_left, key); | |
else | |
return false; | |
} |
3.递归删除
递归删除怎么找到父节点?root = root->_left/ root = root->_right;
bool _EraseR(Node*& root, const K& key) | |
{ | |
if (root == nullptr) | |
{ | |
return false; | |
} | |
if (root->_key < key) | |
{ | |
return _EraseR(root->_right, key); | |
} | |
else if (root->_key > key) | |
{ | |
return _EraseR(root->_left, key); | |
} | |
else | |
{ | |
Node* del = root; | |
if (root->_right == nullptr) | |
{ | |
root = root->_left; | |
} | |
else if (root->_left == nullptr) | |
{ | |
root = root->_right; | |
} | |
else | |
{ | |
Node* minRight = root->_right; | |
while (minRight->_left) | |
{ | |
minRight = minRight->_left; | |
} | |
swap(root->_key, minRight->_key); | |
return _EraseR(root->_right, key); | |
} | |
delete del; | |
return true; | |
} | |
} |
四、应用
最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log2N
最差情况下,二叉搜索树退化为单支树,其平均比较次数为: N/2
1.K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值,判断关键字是否存在。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
以单词集合中的每个单词作为key,构建一棵二叉搜索树,在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2.KV模型:每一个关键码key,都有与之对应的值Value,即**<Key, Value>**的键值对。
比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是**<word, count>**就构成一种键值对。
namespace KV | |
{ | |
template <class K,class V> | |
struct BSTreeNode | |
{ | |
BSTreeNode<K,V>* _left; | |
BSTreeNode<K,V>* _right; | |
K _key; | |
V _value; | |
BSTreeNode(const K& key,const V&value) | |
:_key(key), | |
_value(value), | |
_left(nullptr), | |
_right(nullptr) | |
{} | |
}; | |
template <class K,class V> | |
class BSTree | |
{ | |
typedef BSTreeNode<K, V> Node; | |
public: | |
bool Insert(const K& key, const V& value) | |
Node* find(const K& key) | |
void InOrder() | |
private: | |
Node* _root = nullptr; | |
}; | |
} | |
void TestBSTree() | |
{ | |
//key/Value的搜索模型;通过key查找或修改Value | |
KV::BSTree<string, string> dict; | |
dict.Insert("sort", "排序"); | |
dict.Insert("string", "字符串"); | |
dict.Insert("left", "左"); | |
dict.Insert("right", "右"); | |
string str; | |
while (cin >> str) | |
{ | |
KV::BSTreeNode<string, string>* ret = dict.find(str); | |
if (ret) | |
{ | |
cout << ret->_value << endl; | |
} | |
else | |
{ | |
cout << "找不到" << endl; | |
} | |
} | |
} |
源代码:
BSTree.h
#include <iostream> | |
using namespace std; | |
namespace K | |
{ | |
template <class K> | |
struct BSTreeNode | |
{ | |
BSTreeNode<K>* _left; | |
BSTreeNode<K>* _right; | |
K _key; | |
BSTreeNode(const K& key) | |
:_key(key), | |
_left(nullptr), | |
_right(nullptr) | |
{} | |
}; | |
template <class K> | |
class BSTree | |
{ | |
typedef BSTreeNode<K> Node; | |
public: | |
BSTree() | |
:_root(nullptr) | |
{} | |
BSTree(const BSTree<K>& t) | |
{ | |
_root = Copy(t._root); | |
} | |
BSTree<K>& operator = (BSTree<K> t) | |
{ | |
swap(_root, t._root); | |
return *this; | |
} | |
~BSTree() | |
{ | |
Destroy(_root); | |
_root = nullptr; | |
} | |
bool Insert(const K& key) | |
{ | |
if (_root == nullptr) | |
{ | |
_root = new Node(key); | |
return true; | |
} | |
Node* parent = nullptr; | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
parent = cur; | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
parent = cur; | |
cur = cur->_left; | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
cur = new Node(key); | |
if (parent->_key < key) | |
{ | |
parent->_right = cur; | |
} | |
else | |
{ | |
parent->_left = cur; | |
} | |
return true; | |
} | |
bool find(const K& key) | |
{ | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
cur = cur->_left; | |
} | |
else | |
{ | |
return true; | |
} | |
} | |
return false; | |
} | |
bool Erase(const K& key) | |
{ | |
Node* parent = nullptr; | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
parent = cur; | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
parent = cur; | |
cur = cur->_left; | |
} | |
else | |
{ | |
//左为空 | |
if (cur->_left == nullptr) | |
{ | |
//删除根结点 | |
//if(parent==nullptr) | |
if (cur == _root) | |
{ | |
_root = cur->_right; | |
} | |
else | |
{ | |
if (parent->_left == cur) | |
{ | |
parent->_left = cur->_right; | |
} | |
else | |
{ | |
parent->_right = cur->_right; | |
} | |
} | |
delete cur; | |
} | |
//右为空 | |
else if (cur->_right == nullptr) | |
{ | |
if (cur == _root) | |
{ | |
_root = cur->_left; | |
} | |
else | |
{ | |
if (parent->_left == cur) | |
{ | |
parent->_left = cur->_left; | |
} | |
else | |
{ | |
parent->_right = cur->_left; | |
} | |
} | |
delete cur; | |
} | |
//左右都不为空,找替换节点 | |
else | |
{ | |
//不能初始化为nullptr | |
Node* parent = cur; | |
//右子树最小节点 | |
Node* minRight = cur->_right; | |
while (minRight->_left) | |
{ | |
parent = minRight; | |
minRight = minRight->_left; | |
} | |
cur->_key = minRight->_key; | |
//判断minRight是父亲的左还是右 | |
if (minRight == parent->_left) | |
{ | |
parent->_left = minRight->_right; | |
} | |
else | |
{ | |
parent->_right = minRight->_right; | |
} | |
delete minRight; | |
} | |
return true; | |
} | |
} | |
return false; | |
} | |
void InOrder() | |
{ | |
_InOrder(_root); | |
cout << endl; | |
} | |
//递归 | |
bool InsertR(const K& key) | |
{ | |
return _InsertR(_root, key); | |
} | |
bool FindR(const K& key) | |
{ | |
return _FindR(_root, key); | |
} | |
bool EraseR(const K& key) | |
{ | |
return _EraseR(_root, key); | |
} | |
private: | |
void Destroy(Node* root) | |
{ | |
if (root == nullptr) | |
{ | |
return; | |
} | |
Destroy(root->_left); | |
Destroy(root->_right); | |
delete root; | |
} | |
Node* Copy(Node* root) | |
{ | |
if (root == nullptr) | |
return nullptr; | |
Node* newRoot = new Node(root->_key); | |
newRoot->_left = Copy(root->_left); | |
newRoot->_right = Copy(root->_right); | |
return newRoot; | |
} | |
bool _EraseR(Node*& root, const K& key) | |
{ | |
if (root == nullptr) | |
{ | |
return false; | |
} | |
if (root->_key < key) | |
{ | |
return _EraseR(root->_right, key); | |
} | |
else if (root->_key > key) | |
{ | |
return _EraseR(root->_left, key); | |
} | |
else | |
{ | |
Node* del = root; | |
if (root->_right == nullptr) | |
{ | |
root = root->_left; | |
} | |
else if (root->_left == nullptr) | |
{ | |
root = root->_right; | |
} | |
else | |
{ | |
Node* minRight = root->_right; | |
while (minRight->_left) | |
{ | |
minRight = minRight->_left; | |
} | |
swap(root->_key, minRight->_key); | |
return _EraseR(root->_right, key); | |
} | |
delete del; | |
return true; | |
} | |
} | |
bool _InsertR(Node*& root, const K& key) | |
{ | |
if (root == nullptr) | |
{ | |
root = new Node(key); | |
return true; | |
} | |
else if (root->_key < key) | |
return _InsertR(root->_right, key); | |
else if (root->_key > key) | |
return _InsertR(root->_left, key); | |
else | |
return false; | |
} | |
bool _FindR(Node* root, const K& key) | |
{ | |
if (root == nullptr) return false; | |
else if (root->_key < key) return _FindR(root->_right, key); | |
else if (root->_key > key) return _FindR(root->_left, key); | |
else return true; | |
} | |
void _InOrder(Node* root) | |
{ | |
if (root == nullptr) | |
{ | |
return; | |
} | |
_InOrder(root->_left); | |
cout << root->_key << " "; | |
_InOrder(root->_right); | |
} | |
Node* _root = nullptr; | |
}; | |
} | |
namespace KV | |
{ | |
template <class K,class V> | |
struct BSTreeNode | |
{ | |
BSTreeNode<K,V>* _left; | |
BSTreeNode<K,V>* _right; | |
K _key; | |
V _value; | |
BSTreeNode(const K& key,const V&value) | |
:_key(key), | |
_value(value), | |
_left(nullptr), | |
_right(nullptr) | |
{} | |
}; | |
template <class K,class V> | |
class BSTree | |
{ | |
typedef BSTreeNode<K, V> Node; | |
public: | |
bool Insert(const K& key, const V& value) | |
{ | |
if (_root == nullptr) | |
{ | |
_root = new Node(key, value); | |
return true; | |
} | |
Node* parent = nullptr; | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
parent = cur; | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
parent = cur; | |
cur = cur->_left; | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
cur = new Node(key, value); | |
if (parent->_key < key) | |
{ | |
parent->_right = cur; | |
} | |
else | |
{ | |
parent->_left = cur; | |
} | |
return true; | |
} | |
Node* find(const K& key) | |
{ | |
Node* cur = _root; | |
while (cur) | |
{ | |
if (cur->_key < key) | |
{ | |
cur = cur->_right; | |
} | |
else if (cur->_key > key) | |
{ | |
cur = cur->_left; | |
} | |
else | |
{ | |
return cur; | |
} | |
} | |
return nullptr; | |
} | |
void InOrder() | |
{ | |
_InOrder(_root); | |
} | |
private: | |
void _InOrder(Node* root) | |
{ | |
if (root == nullptr) return; | |
_InOrder(root->_left); | |
cout << root->_key << ":"<<root->_value<<endl; | |
_InOrder(root->_right); | |
} | |
Node* _root = nullptr; | |
}; | |
} | |
void TestBSTree1() | |
{ | |
int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 }; | |
K::BSTree<int> t; | |
for (auto e : a) | |
{ | |
t.Insert(e); | |
} | |
t.InOrder(); | |
K::BSTree<int> copyt(t); | |
copyt.InOrder(); | |
t.InsertR(9); | |
t.InOrder(); | |
t.EraseR(9); | |
t.InOrder(); | |
t.EraseR(3); | |
t.InOrder(); | |
for (auto e : a) | |
{ | |
t.EraseR(e); | |
t.InOrder(); | |
} | |
} | |
void TestBSTree2() | |
{ | |
KV::BSTree<string, string> dict; | |
dict.Insert("sort", "排序"); | |
dict.Insert("string", "字符串"); | |
dict.Insert("left", "左"); | |
dict.Insert("right", "右"); | |
string str; | |
while (cin >> str) | |
{ | |
KV::BSTreeNode<string, string>* ret = dict.find(str); | |
if (ret) | |
{ | |
cout << ret->_value << endl; | |
} | |
else | |
{ | |
cout << "找不到" << endl; | |
} | |
} | |
} | |
void TestBSTree3() | |
{ | |
string arr[] = { "苹果","西瓜","苹果" }; | |
KV::BSTree<string, int> countTree; | |
for (auto e : arr) | |
{ | |
auto* ret = countTree.find(e); | |
if (ret == nullptr) | |
{ | |
countTree.Insert(e, 1); | |
} | |
else | |
{ | |
ret->_value++; | |
} | |
} | |
countTree.InOrder(); | |
} | |
#include "BSTree.h" | |
int main() | |
{ | |
//TestBSTree1(); | |
TestBSTree2(); | |
//TestBSTree3(); | |
return 0; | |
} |
五、题目练习
根据二叉树创建字符串
前序遍历,左为空,右不为空的括号不可以省略,右为空的括号可以省略
class Solution { | |
public: | |
string tree2str(TreeNode* root) { | |
if(root == nullptr) return string(); | |
string ret; | |
ret += to_string(root->val); | |
if(root->left) | |
{ | |
ret+='('; | |
ret+= tree2str(root->left); | |
ret+=')'; | |
} | |
else if(root->right) | |
{ | |
ret+="()"; | |
} | |
if(root->right) | |
{ | |
ret+='('; | |
ret+=tree2str(root->right); | |
ret+=')'; | |
} | |
return ret; | |
} | |
}; |
二叉树的层序遍历
层序遍历,可以通过一个队列来实现,同时定义每次队列的大小
class Solution { | |
public: | |
vector<vector<int>> levelOrder(TreeNode* root) { | |
queue<TreeNode*> q; | |
vector<vector<int>> vv; | |
size_t levelSize = 0; | |
if(root) | |
{ | |
q.push(root); | |
levelSize=1; | |
} | |
while(!q.empty()) | |
{ | |
vector<int> v; | |
while(levelSize--) | |
{ | |
TreeNode* front = q.front(); | |
q.pop(); | |
v.push_back(front->val); | |
if(front->left) | |
{ | |
q.push(front->left); | |
} | |
if(front->right) | |
{ | |
q.push(front->right); | |
} | |
} | |
vv.push_back(v); | |
levelSize = q.size(); | |
} | |
return vv; | |
} | |
}; |
二叉树的最近公共祖先
class Solution { | |
bool isInTree(TreeNode*root,TreeNode*x) | |
{ | |
if(root == nullptr) return false; | |
if(root == x) return true; | |
else | |
return isInTree(root->left,x) | |
|| isInTree(root->right,x); | |
} | |
public: | |
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { | |
if(root==nullptr) | |
return nullptr; | |
if(root == p||root==q) return root; | |
bool pLeft = isInTree(root->left,p); | |
bool pRight = !pLeft; | |
bool qLeft = isInTree(root->left,q); | |
bool qRight = !qLeft; | |
//一个在左一个在右 | |
if((pLeft&&qRight)||(pRight&&qLeft)) | |
return root; | |
//同左 | |
if(pLeft&&qLeft) | |
return lowestCommonAncestor(root->left,p,q); | |
//同右 | |
else | |
return lowestCommonAncestor(root->right,p,q); | |
} | |
}; |
把根到对应节点的路径存储起来,在找出相交的结点即是最近的公共结点:
class Solution { | |
bool GetPath(TreeNode*root,TreeNode*x,stack<TreeNode*>& stack) | |
{ | |
if(root == nullptr) return false; | |
stack.push(root); | |
if(root == x) | |
{ | |
return true; | |
} | |
if(GetPath(root->left,x,stack)) | |
return true; | |
if(GetPath(root->right,x,stack)) | |
return true; | |
stack.pop(); | |
return false; | |
} | |
public: | |
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { | |
if(root==nullptr) | |
return nullptr; | |
stack<TreeNode*> pPath; | |
stack<TreeNode*> qPath; | |
GetPath(root,p,pPath); | |
GetPath(root,q,qPath); | |
//长的先pop | |
while(pPath.size()!=qPath.size()) | |
{ | |
if(pPath.size()>qPath.size()) | |
{ | |
pPath.pop(); | |
} | |
else | |
qPath.pop(); | |
} | |
//同时pop,找出交点 | |
while(pPath.top()!=qPath.top()) | |
{ | |
pPath.pop(); | |
qPath.pop(); | |
} | |
return pPath.top(); | |
} | |
}; |
二叉搜索树与双向链表
思路一:中序遍历,将节点放到一个vector中,在链接节点,但是空间复杂度不符合题目要求:
class Solution { | |
void InOrder(TreeNode*root,vector<TreeNode*>& v) | |
{ | |
if(root==nullptr) return; | |
InOrder(root->left,v); | |
v.push_back(root); | |
InOrder(root->right,v); | |
} | |
public: | |
TreeNode* Convert(TreeNode* pRootOfTree) { | |
if(pRootOfTree==nullptr) return nullptr; | |
vector<TreeNode*> v; | |
InOrder(pRootOfTree,v); | |
if(v.size()<=1) return v[0]; | |
v[0]->left =nullptr; | |
v[0]->right = v[1]; | |
for(int i =1;i<v.size()-1;i++) | |
{ | |
v[i]->left = v[i-1]; | |
v[i]->right = v[i+1]; | |
} | |
v[v.size()-1]->left = v[v.size()-2]; | |
v[v.size()-1]->right = nullptr; | |
return v[0]; | |
} | |
}; |
思路二:递归直接进行转换
class Solution { | |
void InOrder(TreeNode*cur,TreeNode*&prev) | |
{ | |
if(cur==nullptr) | |
{ | |
return; | |
} | |
InOrder(cur->left,prev); | |
cur->left = prev; | |
if(prev) | |
{ | |
prev->right = cur; | |
} | |
prev = cur; | |
InOrder(cur->right,prev); | |
} | |
public: | |
TreeNode* Convert(TreeNode* pRootOfTree) { | |
TreeNode*prev = nullptr; | |
InOrder(pRootOfTree,prev); | |
//找头 | |
TreeNode*head = pRootOfTree; | |
while(head&&head->left) | |
{ | |
head = head->left; | |
} | |
return head; | |
} | |
}; |
从前序与中序遍历序列构造二叉树
根据前序结果去创建树,前序是根左右,前序第一个元素就是根,在通过中序去进行分割左右子树。子树区间确认是否继续递归创建子树,区间不存在则是空树。所以根据前序先构造根,在通过中序构造左子树、在构造右子树即可。
class Solution { | |
TreeNode* _buildTree(vector<int>& preorder, vector<int>& inorder,int&prei,int inbegin,int inend) | |
{ | |
if(inbegin>inend) | |
{ | |
return nullptr; | |
} | |
TreeNode*root = new TreeNode(preorder[prei]); | |
int rooti = inbegin; | |
while(inbegin<=inend) | |
{ | |
if(preorder[prei] == inorder[rooti]) | |
{ | |
break; | |
} | |
else rooti++; | |
} | |
prei++; | |
//[inbegin,rooti-1]rooti[rooti+1,inend] | |
root->left= _buildTree(preorder,inorder,prei,inbegin,rooti-1); | |
root->right = _buildTree(preorder,inorder,prei,rooti+1,inend); | |
return root; | |
} | |
public: | |
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { | |
int prei = 0; | |
return _buildTree(preorder,inorder,prei,0,inorder.size()-1); | |
} | |
}; |
传引用问题:因为prei是遍历前序数组开始的下标,整个递归遍历中都要使用,所以我们需要传引用。如果不是传引用而是传值的话,左子树构建好返回,如果此时prei不是传引用,只是形参,无法将上一次递归的结果保留下来,那么也就无构建右子树了。
从中序与后序遍历序列构造二叉树
根据后序遍历的最后一个元素可以确定根结点,有了根结点做为切割点然后再去根据中序遍历划分左右区间,在继续下去,构造成二叉树,区间不存在就是空树了。同时,后序遍历是左右根,所以最后一个是根节点。所以当我们构造根结点后,由于前面是右子树,所以先构造右子树,在构造左子数。
class Solution { | |
TreeNode* _buildTree(vector<int>& inorder, vector<int>& postorder,int &posi,int inbegin,int inend) | |
{ | |
if(inbegin>inend) | |
{ | |
return nullptr; | |
} | |
TreeNode* root = new TreeNode(postorder[posi]); | |
int rooti = inbegin; | |
while(inbegin<=inend) | |
{ | |
if(postorder[posi] == inorder[rooti]) | |
{ | |
break; | |
} | |
else rooti++; | |
} | |
posi--; | |
//[inbegin,rooti-1]rooti[rooti+1,inend]; | |
root->right = _buildTree(inorder,postorder,posi,rooti+1,inend); | |
root->left = _buildTree(inorder,postorder,posi,inbegin,rooti-1); | |
return root; | |
} | |
public: | |
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) { | |
int posi = postorder.size()-1; | |
return _buildTree(inorder,postorder,posi,0,inorder.size()-1); | |
} | |
}; |