ConcurrentHashMap源码解析
话不多说,先上图
方法太多只能截一半
- 这次先介绍字段属性吧,因为可能之前的那种写法我太懒 不想改了,我觉得这样可能更好一点。
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {
private static final long serialVersionUID =L;
// 表的最大容量
private static final int MAXIMUM_CAPACITY = << 30;
// 默认表的大小
private static final int DEFAULT_CAPACITY =;
// 最大数组大小
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE -;
// 默认并发数
private static final int DEFAULT_CONCURRENCY_LEVEL =;
// 装载因子
private static final float LOAD_FACTOR =.75f;
// 转化为红黑树的阈值
static final int TREEIFY_THRESHOLD =;
// 由红黑树转化为链表的阈值
static final int UNTREEIFY_THRESHOLD =;
// 转化为红黑树的表的最小容量
static final int MIN_TREEIFY_CAPACITY =;
// 每次进行转移的最小值
private static final int MIN_TRANSFER_STRIDE =;
// 生成sizeCtl所使用的bit位数
private static int RESIZE_STAMP_BITS =;
// 进行扩容所允许的最大线程数
private static final int MAX_RESIZERS = ( << (32 - RESIZE_STAMP_BITS)) - 1;
// 记录sizeCtl中的大小所需要进行的偏移位数
private static final int RESIZE_STAMP_SHIFT = - RESIZE_STAMP_BITS;
// 一系列的标识
static final int MOVED = -; // hash for forwarding nodes
static final int TREEBIN = -; // hash for roots of trees
static final int RESERVED = -; // hash for transient reservations
static final int HASH_BITS =x7fffffff; // usable bits of normal node hash
//
/** Number of CPUS, to place bounds on some sizings */
// 获取可用的CPU个数
static final int NCPU = Runtime.getRuntime().availableProcessors();
//
/** For serialization compatibility. */
// 进行序列化的属性
private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("segments", Segment[].class),
new ObjectStreamField("segmentMask", Integer.TYPE),
new ObjectStreamField("segmentShift", Integer.TYPE)
};
// 哈希桶数组
transient volatile Node<K,V>[] table;
// 下一个哈希桶数组
private transient volatile Node<K,V>[] nextTable;
//
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
// 基本计数
private transient volatile long baseCount;
//
/**
* Table initialization and resizing control. When negative, the
* table is being initialized or resized: - for initialization,
* else -( + the number of active resizing threads). Otherwise,
* when table is null, holds the initial table size to use upon
* creation, or for default. After initialization, holds the
* next element count value upon which to resize the table.
*/
// 对表初始化和扩容控制
private transient volatile int sizeCtl;
/**
* The next table index (plus one) to split while resizing.
*/
// 扩容下另一个表的索引
private transient volatile int transferIndex;
/**
* Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
*/
// 旋转锁
private transient volatile int cellsBusy;
/**
* Table of counter cells. When non-null, size is a power of.
*/
// counterCell
private transient volatile CounterCell[] counterCells;
// views
// 视图
private transient KeySetView<K,V> keySet;
private transient ValuesView<K,V> values;
private transient EntrySetView<K,V> entrySet;
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long SIZECTL;
private static final long TRANSFERINDEX;
private static final long BASECOUNT;
private static final long CELLSBUSY;
private static final long CELLVALUE;
private static final long ABASE;
private static final int ASHIFT;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = ConcurrentHashMap.class;
SIZECTL = U.objectFieldOffset
(k.getDeclaredField("sizeCtl"));
TRANSFERINDEX = U.objectFieldOffset
(k.getDeclaredField("transferIndex"));
BASECOUNT = U.objectFieldOffset
(k.getDeclaredField("baseCount"));
CELLSBUSY = U.objectFieldOffset
(k.getDeclaredField("cellsBusy"));
Class<?> ck = CounterCell.class;
CELLVALUE = U.objectFieldOffset
(ck.getDeclaredField("value"));
Class<?> ak = Node[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale -)) != 0)
throw new Error("data type scale not a power of two");
ASHIFT = - Integer.numberOfLeadingZeros(scale);
} catch (Exception e) {
throw new Error(e);
}
}
}
- 接下里还是构造方法吧
- 无参构造:ConcurrentHashMap()
- 该构造函数用于创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。
public ConcurrentHashMap() {
}
ConcurrentHashMap(int initialCapacity)构造方法
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity <)
throw new IllegalArgumentException();
// 找到最接近该容量的的幂次方数(hashMap中有,请看上一篇)
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>>)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>>) + 1));
// 初始化
this.sizeCtl = cap;
}
ConcurrentHashMap(Map<? extends K, ? extends V> m)构造方法
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
// 将集合m的元素全部放入
putAll(m);
}
public void putAll(Map<? extends K, ? extends V> m) {
tryPresize(m.size());
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
//这个是核心方法
putVal(e.getKey(), e.getValue(), false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// 键或值为空,抛出异常
if (key == null || value == null) throw new NullPointerException();
// 键的hash值经过计算获得hash值
int hash = spread(key.hashCode());
int binCount =;
for (Node<K,V>[] tab = table;;) { // 无限循环
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) ==) // 表为空或者表的长度为0
// 初始化表
tab = initTable();
else if ((f = tabAt(tab, i = (n -) & hash)) == null) { // 表不为空并且表的长度大于0,并且该桶不为空
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null))) // 比较并且交换值,如tab的第i项为空则用新生成的node替换
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED) // 该结点的hash值为MOVED
// 进行结点的转移(在扩容的过程中)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) { // 加锁同步
if (tabAt(tab, i) == f) { // 找到table表下标为i的节点
if (fh >=) { // 该table表中该结点的hash值大于0
// binCount赋值为
binCount =;
for (Node<K,V> e = f;; ++binCount) { // 无限循环
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) { // 结点的hash值相等并且key也相等
// 保存该结点的val值
oldVal = e.val;
if (!onlyIfAbsent) // 进行判断
// 将指定的value保存至结点,即进行了结点值的更新
e.val = value;
break;
}
// 保存当前结点
Node<K,V> pred = e;
if ((e = e.next) == null) { // 当前结点的下一个结点为空,即为最后一个结点
// 新生一个结点并且赋值给next域
pred.next = new Node<K,V>(hash, key,
value, null);
// 退出循环
break;
}
}
}
else if (f instanceof TreeBin) { // 结点为红黑树结点类型
Node<K,V> p;
// binCount赋值为
binCount =;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) { // 将hash、key、value放入红黑树
// 保存结点的val
oldVal = p.val;
if (!onlyIfAbsent) // 判断
// 赋值结点value值
p.val = value;
}
}
}
}
if (binCount !=) { // binCount不为0
if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于转化为红黑树的阈值
// 进行转化
treeifyBin(tab, i);
if (oldVal != null) // 旧值不为空
// 返回旧值
return oldVal;
break;
}
}
}
// 增加binCount的数量
addCount(L, binCount);
return null;
}
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
// 无限循环
while ((tab = table) == null || tab.length ==) {
if ((sc = sizeCtl) <)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -)) { // 比较sizeCtl的值与sc是否相等,相等则用-1替换
try {
if ((tab = table) == null || tab.length ==) { // table表为空或者大小为0
// sc的值是否大于,若是,则n为sc,否则,n为默认初始容量
int n = (sc >) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
// 新生结点数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 赋值给table
table = tab = nt;
// sc为n */4
sc = n - (n >>>);
}
} finally {
// 设置sizeCtl的值
sizeCtl = sc;
}
break;
}
}
// 返回table
return tab;
}
在ConcurrentHashMap中通过原子操作查找元素、替换元素和设置元素。这些原子操作起着非常关键的作用。
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
ConcurrentHashMap(int initialCapacity, float loadFactor)构造方法该构造函数用于创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (1) 的新的空映射
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor,);
}
ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel)构造方法
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
// 合法性判断
if (!(loadFactor >.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
- put(K key, V value)方法
- ConcurrentHashMap的键和值都不能为null
public V put(K key, V value) {
//还是调用putVal()方法 上面有解释
return putVal(key, value, false);
}
- get(Object key)方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算key的hash值
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > &&
(e = tabAt(tab, (n -) & h)) != null) { // 表不为空并且表的长度大于0并且key所在的桶不为空
if ((eh = e.hash) == h) { // 表中的元素的hash值与key的hash值相等
if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 键相等
// 返回值
return e.val;
}
else if (eh <) // 结点hash值小于0
// 在桶(链表/红黑树)中查找
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) { // 对于结点hash值大于的情况
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
总结:
ConcurrentHashMap和Hashtable的区别 ConcurrentHashMap和Hashtable的区别主要体现在实现线程的安全的方式上不同。 底层数据结构 :JDK1.7的ConcurrentHashMap底层采用分段的数组+链表实现,JDK1.8采用的数 据结构跟HashMapl.8的结构一样,数组+链表/红黑二叉树。Hashtable和JDK1.8之前的HashMap 的底层数据结构类似都是采用数组+链表的形式,数组是HashMap的主体,链表则是主要为了解决 哈希冲突而存在的; 实现线程安全的方式 :①在JDK1.7的时候,ConcurrentHashMap (分段锁)对整个桶数 组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的 数据,就不会存在锁竞争,提高并发访问率。到了 JDK1.8的时候已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用synchronized和CAS来操作。(JDK1.6以后对synchronized锁做了很多优化)整个看起来就像是优化过且线程安全的HashMap,虽然在IDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本;②Hashtable(同一把锁):使用synchronized来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用put添加元素,另一个线程不能使用put添加元素,也不能使用get,竞争会越来越激烈效率越低。Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。