本文内容主要翻译自Learn Blockchains by Building One。
最快的学习区块链的方式是自己创建一个。
我们都对比特币的崛起感到惊讶惊奇,并且想知道其背后的技术——区块链是如何实现的。
但是完全搞懂区块链并非易事,至少对我来讲是这样。我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建一个区块链可以加深对区块链的理解。
准备工作
我们知道区块链是由区块的记录构成的不可变、有序的链结构,记录可以是交易、文件或任何你想要的数据,重要的是它们是通过哈希值(hashes)链接起来的。
阅读这篇文章,要求读者对Python有基本的了解,能编写基本的Python代码,并且需要对HTTP请求有基本的理解。
环境准备
确保已经安装Python3.6+, pip , Flask, requests。
安装方法:
pip install Flask==0.12.2 requests==2.18.4
同时还需要一个HTTP客户端,比如Postman,cURL或其它客户端。
一、开始创建BlockChain
打开你最喜欢的文本编辑器或者IDE,比如PyCharm,新建一个文件 blockchain.py,本文所有的代码都写在这一个文件中。
BlockChain类
首先创建一个Blockchain类,在构造函数中创建了两个列表,一个用于储存区块链,一个用于储存交易。
以下是BlockChain类的框架:
class Blockchain(object): | |
def __init__(self): self.chain = [] self.current_transactions = [] def new_block(self): # Creates a new Block and adds it to the chain | |
pass def new_transaction(self): # Adds a new transaction to the list of transactions | |
pass | |
@staticmethod def hash(block): # Hashes a Block | |
pass | |
@property def last_block(self): # Returns the last Block in the chain | |
pass |
Blockchain类用来管理链条,它能存储交易,加入新块等,下面我们来进一步完善这些方法。
块结构
每个区块包含属性:索引(index),Unix时间戳(timestamp),交易列表(transactions),工作量证明(稍后解释)以及前一个区块的Hash值。
以下是一个区块结构:
block = { 'index': 1, 'timestamp': 1506057125.900785, 'transactions': [ | |
{ 'sender': "8527147fe1f5426f9dd545de4b27ee00", 'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f", 'amount': 5, | |
} | |
], 'proof': 324984774000, 'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"} |
到这里,区块链的概念就清楚了,每个新的区块都包含上一个区块的Hash,这是关键的一点,它保障了区块链不可变性。如果攻击者破坏了前面的某个区块,那么后面所有区块的Hash都会变得不正确。
加入交易
接下来我们需要添加一个交易,来完善下new_transaction方法
class Blockchain(object): | |
def new_transaction(self, sender, recipient, amount): | |
""" | |
生成新交易信息,信息将加入到下一个待挖的区块中 | |
:param sender: <str> Address of the Sender | |
:param recipient: <str> Address of the Recipient | |
:param amount: <int> Amount | |
:return: <int> The index of the Block that will hold this transaction | |
""" | |
self.current_transactions.append({ 'sender': sender, 'recipient': recipient, 'amount': amount, | |
}) return self.last_block['index'] + 1 |
方法向列表中添加一个交易记录,并返回该记录将被添加到的区块(下一个待挖掘的区块)的索引,等下在用户提交交易时会有用。
创建区块
当Blockchain实例化后,我们需要构造一个创世块(没有前区块的第一个区块),并且给它加上一个工作量证明。
每个区块都需要经过工作量证明,俗称挖矿,稍后会继续讲解。
为了构造创世块,我们还需要完善new_block(), new_transaction() 和hash() 方法:
import hashlibimport jsonfrom time import timeclass Blockchain(object): | |
def __init__(self): | |
self.current_transactions = [] | |
self.chain = [] # Create the genesis block | |
self.new_block(previous_hash=1, proof=100) def new_block(self, proof, previous_hash=None): | |
""" | |
生成新块 | |
:param proof: <int> The proof given by the Proof of Work algorithm | |
:param previous_hash: (Optional) <str> Hash of previous Block | |
:return: <dict> New Block | |
""" | |
block = { 'index': len(self.chain) + 1, 'timestamp': time(), 'transactions': self.current_transactions, 'proof': proof, 'previous_hash': previous_hash or self.hash(self.chain[-1]), | |
} # Reset the current list of transactions | |
self.current_transactions = [] | |
self.chain.append(block) return block def new_transaction(self, sender, recipient, amount): | |
""" | |
生成新交易信息,信息将加入到下一个待挖的区块中 | |
:param sender: <str> Address of the Sender | |
:param recipient: <str> Address of the Recipient | |
:param amount: <int> Amount | |
:return: <int> The index of the Block that will hold this transaction | |
""" | |
self.current_transactions.append({ 'sender': sender, 'recipient': recipient, 'amount': amount, | |
}) return self.last_block['index'] + 1 @property | |
def last_block(self): | |
return self.chain[-1] @staticmethod | |
def hash(block): | |
""" | |
生成块的 SHA-256 hash值 | |
:param block: <dict> Block | |
:return: <str> | |
""" | |
# We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes | |
block_string = json.dumps(block, sort_keys=True).encode() return hashlib.sha256(block_string).hexdigest() |
通过上面的代码和注释可以对区块链有直观的了解,接下来我们看看区块是怎么挖出来的。
理解工作量证明
新的区块依赖工作量证明算法(PoW)来构造。PoW的目标是找出一个符合特定条件的数字,这个数字很难计算出来,但容易验证。这就是工作量证明的核心思想。
为了方便理解,我们举个例子:
假设一个整数 x 乘以另一个整数 y 的积的 Hash 值必须以 0 结尾,即 hash(x * y) = ac23dc…0。设变量 x = 5,求 y 的值?
用Python实现如下:
from hashlib import sha256 | |
x = 5y = 0 # y未知while sha256(f'{x*y}'.encode()).hexdigest()[-1] != "0": | |
y += 1print(f'The solution is y = {y}') |
结果y=21,因为:
hash(5 * 21) = 1253e9373e...5e3600155e860
在比特币中,使用称为Hashcash的工作量证明算法,它和上面的问题很类似。矿工们为了争夺创建区块的权利而争相计算结果。通常,计算难度与目标字符串需要满足的特定字符的数量成正比,矿工算出结果后,会获得比特币奖励。
当然,在网络上非常容易验证这个结果。
实现工作量证明
让我们来实现一个相似PoW算法,规则是:
寻找一个数 p,使得它与前一个区块的 proof 拼接成的字符串的 Hash 值以 4 个零开头。
import hashlibimport jsonfrom time import timefrom uuid import uuid4class Blockchain(object): | |
def proof_of_work(self, last_proof): | |
""" | |
简单的工作量证明: | |
- 查找一个 p' 使得 hash(pp') 以4个0开头 | |
- p 是上一个块的证明, p' 是当前的证明 | |
:param last_proof: <int> | |
:return: <int> | |
""" | |
proof = 0 | |
while self.valid_proof(last_proof, proof) is False: | |
proof += 1 | |
return proof @staticmethod | |
def valid_proof(last_proof, proof): | |
""" | |
验证证明: 是否hash(last_proof, proof)以4个0开头? | |
:param last_proof: <int> Previous Proof | |
:param proof: <int> Current Proof | |
:return: <bool> True if correct, False if not. | |
""" | |
guess = f'{last_proof}{proof}'.encode() | |
guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == "0000" |
衡量算法复杂度的办法是修改零开头的个数。使用4个来用于演示,你会发现多一个零都会大大增加计算出结果所需的时间。
现在Blockchain类基本已经完成了,接下来使用HTTP requests来进行交互。
二、BlockChain作为API接口
我们将使用Python Flask框架,这是一个轻量Web应用框架,它方便将网络请求映射到 Python函数,现在我们来让Blockchain运行在基于Flask web上。
我们将创建三个接口:
- /transactions/new创建一个交易并添加到区块
- /mine 告诉服务器去挖掘新的区块
- /chain 返回整个区块链
创建节点
我们的Flask服务器将扮演区块链网络中的一个节点。我们先添加一些框架代码:
import hashlibimport jsonfrom textwrap import dedentfrom time import timefrom uuid import uuid4from flask import Flaskclass Blockchain(object): | |
...# Instantiate our Nodeapp = Flask(__name__)# Generate a globally unique address for this nodenode_identifier = str(uuid4()).replace('-', '')# Instantiate the Blockchainblockchain = Blockchain() .route('/mine', methods=['GET'])def mine(): | |
return "We'll mine a new Block" .route('/transactions/new', methods=['POST'])def new_transaction(): | |
return "We'll add a new transaction" .route('/chain', methods=['GET'])def full_chain(): | |
response = { 'chain': blockchain.chain, 'length': len(blockchain.chain), | |
} return jsonify(response), 200if __name__ == '__main__': | |
app.run(host='127.0.0.1', port=5000) |
简单的说明一下以上代码:
第15行: 创建一个节点.
第18行: 为节点创建一个随机的名字.
第21行: 实例Blockchain类.
第24–26行: 创建/mine GET接口。
第28–30行: 创建/transactions/new POST接口,可以给接口发送交易数据.
第32–38行: 创建 /chain 接口, 返回整个区块链。
第40–41行: 服务运行在端口5000上.
发送交易
发送到节点的交易数据结构如下:
{"sender": "my address","recipient": "someone else's address","amount": 5}
之前已经有添加交易的方法,基于接口来添加交易就很简单了
import hashlibimport jsonfrom textwrap import dedentfrom time import timefrom uuid import uuid4from flask import Flask, jsonify, request | |
...@app.route('/transactions/new', methods=['POST'])def new_transaction(): | |
values = request.get_json() # Check that the required fields are in the POST'ed data | |
required = ['sender', 'recipient', 'amount'] if not all(k in values for k in required): return 'Missing values', 400 | |
# Create a new Transaction | |
index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount']) | |
response = {'message': f'Transaction will be added to Block {index}'} return jsonify(response), 201 |
挖矿
挖矿正是神奇所在,它很简单,做了一下三件事:
- 计算工作量证明PoW
- 通过新增一个交易授予矿工(自己)一个币
- 构造新区块并将其添加到链中
import hashlibimport jsonfrom time import timefrom uuid import uuid4from flask import Flask, jsonify, request | |
...@app.route('/mine', methods=['GET'])def mine(): | |
# We run the proof of work algorithm to get the next proof... | |
last_block = blockchain.last_block | |
last_proof = last_block['proof'] | |
proof = blockchain.proof_of_work(last_proof) # 给工作量证明的节点提供奖励. | |
# 发送者为 "0" 表明是新挖出的币 | |
blockchain.new_transaction( | |
sender="0", | |
recipient=node_identifier, | |
amount=1, | |
) # Forge the new Block by adding it to the chain | |
block = blockchain.new_block(proof) | |
response = { 'message': "New Block Forged", 'index': block['index'], 'transactions': block['transactions'], 'proof': block['proof'], 'previous_hash': block['previous_hash'], | |
} return jsonify(response), 200 |
注意交易的接收者是我们自己的服务器节点,我们做的大部分工作都只是围绕Blockchain类方法进行交互。到此,我们的区块链就算完成了,我们来实际运行下
三、运行区块链
你可以使用cURL 或Postman 去和API进行交互
启动server:
$python blockchain.py* Runing on http://127.0.0.1:5000/ (Press CTRL+C to quit)
让我们通过请求
http://localhost:5000/mine 来进行挖矿
通过post请求,添加一个新交易
如果不是使用Postman,则用一下的cURL语句也是一样的:
$ curl -X POST -H "Content-Type: application/json" -d '{ | |
"sender": "d4ee26eee15148ee92c6cd394edd974e", | |
"recipient": "someone-other-address", | |
"amount": 5 | |
}' "http://localhost:5000/transactions/new" |
在挖了两次矿之后,就有3个块了,通过请求
http://localhost:5000/chain 可以得到所有的块信息。
{ "chain": [ | |
{ "index": 1, "previous_hash": 1, "proof": 100, "timestamp": 1506280650.770839, "transactions": [] | |
}, | |
{ "index": 2, "previous_hash": "c099bc...bfb7", "proof": 35293, "timestamp": 1506280664.717925, "transactions": [ | |
{ "amount": 1, "recipient": "8bbcb347e0634905b0cac7955bae152b", "sender": "0" | |
} | |
] | |
}, | |
{ "index": 3, "previous_hash": "eff91a...10f2", "proof": 35089, "timestamp": 1506280666.1086972, "transactions": [ | |
{ "amount": 1, "recipient": "8bbcb347e0634905b0cac7955bae152b", "sender": "0" | |
} | |
] | |
} | |
], "length": 3} |
四、一致性(共识)
非常棒,我们已经有了一个基本的区块链可以接受交易和挖矿。但是区块链系统应该是分布式的。既然是分布式的,那么我们究竟拿什么保证所有节点有同样的链呢?这就是一致性问题,我们要想在网络上有多个节点,就必须实现一个一致性的算法。
注册节点
在实现一致性算法之前,我们需要找到一种方式让一个节点知道它相邻的节点。每个节点都需要保存一份包含网络中其它节点的记录。因此让我们新增几个接口:
- /nodes/register 接收URL形式的新节点列表
- /nodes/resolve 执行一致性算法,解决任何冲突,确保节点拥有正确的链
我们修改下Blockchain的init函数并提供一个注册节点方法:
...from urllib.parse import urlparse | |
...class Blockchain(object): | |
def __init__(self): | |
... | |
self.nodes = set() | |
def register_node(self, address): | |
""" | |
Add a new node to the list of nodes | |
:param address: <str> Address of node. Eg. 'http://192.168.0.5:5000' | |
:return: None | |
""" | |
parsed_url = urlparse(address) | |
self.nodes.add(parsed_url.netloc) |
我们用 set 来储存节点,这是一种避免重复添加节点的简单方法。
实现共识算法
前面提到,冲突是指不同的节点拥有不同的链,为了解决这个问题,规定最长的、有效的链才是最终的链,换句话说,网络中有效最长链才是实际的链。
我们使用以下的算法,来达到网络中的共识
... | |
import requestsclass Blockchain(object) | |
def valid_chain(self, chain): """ | |
Determine if a given blockchain is valid | |
:param chain: <list> A blockchain | |
:return: <bool> True if valid, False if not | |
""" | |
last_block = chain[0] | |
current_index = 1 | |
while current_index < len(chain): | |
block = chain[current_index] | |
print(f'{last_block}') | |
print(f'{block}') | |
print("\n-----------\n") # Check that the hash of the block is correct | |
if block['previous_hash'] != self.hash(last_block): return False # Check that the Proof of Work is correct | |
if not self.valid_proof(last_block['proof'], block['proof']): return False | |
last_block = block | |
current_index += 1 | |
return True def resolve_conflicts(self): """ | |
共识算法解决冲突 | |
使用网络中最长的链. | |
:return: <bool> True 如果链被取代, 否则为False | |
""" | |
neighbours = self.nodes | |
new_chain = None # We're only looking for chains longer than ours | |
max_length = len(self.chain) # Grab and verify the chains from all the nodes in our network | |
for node in neighbours: | |
response = requests.get(f'http://{node}/chain') if response.status_code == 200: | |
length = response.json()['length'] | |
chain = response.json()['chain'] # Check if the length is longer and the chain is valid | |
if length > max_length and self.valid_chain(chain): | |
max_length = length | |
new_chain = chain # Replace our chain if we discovered a new, valid chain longer than ours | |
if new_chain: | |
self.chain = new_chain return True return False |
第1个方法 valid_chain() 用来检查是否是有效链,遍历每个块验证hash和proof。
第2个方法 resolve_conflicts() 用来解决冲突,遍历所有的邻居节点,并用上一个方法检查链的有效性, 如果发现有效更长链,就替换掉自己的链。
让我们添加两个路由,一个用来注册节点,一个用来解决冲突。
'/nodes/register', methods=['POST'])def register_nodes(): | .route(|
values = request.get_json() | |
nodes = values.get('nodes') if nodes is None: | |
return "Error: Please supply a valid list of nodes", 400 | |
for node in nodes: | |
blockchain.register_node(node) | |
response = { 'message': 'New nodes have been added', 'total_nodes': list(blockchain.nodes), | |
} return jsonify(response), 201 .route('/nodes/resolve', methods=['GET'])def consensus(): | |
replaced = blockchain.resolve_conflicts() if replaced: | |
response = { 'message': 'Our chain was replaced', 'new_chain': blockchain.chain | |
} else: | |
response = { 'message': 'Our chain is authoritative', 'chain': blockchain.chain | |
} return jsonify(response), 200 |
你可以在不同的机器运行节点,或在一台机机开启不同的网络端口来模拟多节点的网络,这里在同一台机器开启不同的端口演示,在不同的终端运行一下命令,就启动了两个节点:http://localhost:5000 和 http://localhost:5001
pipenv run python blockchain.pypipenv run python blockchain.py -p 5001
然后在节点2上挖两个块,确保是更长的链,然后在节点1上访问接口/nodes/resolve ,这时节点1的链会通过共识算法被节点2的链取代。
好啦,你可以邀请朋友们一起来测试你的区块链。