目录
何为反射?
反射(Reflection),是指 java 程序具有 在运行期 分析类以及修改其本身状态或行为的能力 。
通俗点说 就是 通过反射我们可以 动态地 获取一个类的所有属性和方法,还可以操作这些方法和属性。
实例的创建
一般我们创建一个对象实例 Person zhang = new Person();
虽然是简简单单一句,但 JVM 内部的实现过程是复杂的:
- 将硬盘上指定位置的Person. class文件 加载进内存
- 执行main方法时,在栈内存中开辟了main方法的空间(压栈-进栈),然后在main方法的栈区分配了一个变量zhang。
- 执行new,在堆内存中开辟一个 实体类的 空间,分配了一个内存首地址值
- 调用该实体类对应的构造函数,进行初始化(如果没有构造函数, Java 会补上一个 默认构造函数 )。
- 将实体类的 首地址赋值给zhang,变量zhang就引用了该实体。(指向了该对象)
其中上图步骤1 Classloader(类加载器) 将class文件加载到内存中具体分为3个阶段:加载、连接、初始化
而又在 加载阶段,类加载器 会 将类对应的.class文件中的 二进制 字节流读入到内存中,将这个字节流转化为方法区的运行时数据结构,然后在堆区创建一个**java.lang.Class 对象**(类相关的信息),作为对方法区中这些数据的访问入口
然后再通过 类的实例 来执操作 类的方法和属性 ,比如 zhang.eat(), zhang.getHeight() 等等
如果我们使用反射的话,我们需要拿到该类Person的Class对象,再通过Class对象来操作 类的方法和属性或者创建类的实例
Class personClass = Person.class;//这边只是举一个例子,获取class对象的多种方式,本文后面再慢慢道来
Object person = personClass.newInstance();
我们可以发现 通过new创建类的实例和反射创建类的实例,都绕不开.class文件 和 Class类的。
.class文件
首先我们得先了解一下 什么是.class文件
举个简单的例子,创建一个Person类:
public class Person {
/**
* 状态 or 属性
*/ String name;//姓名
String sex;//性别
int height;//身高
int weight;//体重
/**
* 行为
*/ public void sleep(){
System.out.println(this.name+"--"+ "睡觉");
}
public void eat(){
System.out.println("吃饭");
}
public void Dance(){
System.out.println("跳舞");
}
}
我们执行 javac 命令,编译生成Person.class文件
然后我们通过 vim 16进制 打开它
#打开file文件
vim Person.class
#在命令模式下输入.. 以进制显示
:%!xxd
#在命令模式下输入.. 切换回默认显示
:%!xxd -r
不同的操作系统,不同的 CPU 具有不同的 指令集 ,JAVA能做到平台无关性,依靠的就是 Java 虚拟机 。
.java源码是给人类读的,而 .class字节码是给JVM虚拟机读的 ,计算机智能识别 0 和 1组成的二进制文件,所以虚拟机就是我们编写的代码和计算机之间的桥梁。
虚拟机将我们编写的 .java 源程序文件编译为 字节码 格式的 .class 文件, 字节码 是各种虚拟机与所有平台统一使用的程序存储格式,class文件主要用于解决平台无关性的中间文件
Person.class文件 包含Person类的所有信息
Class类
我们来看下 jdk 的官方api文档对其的定义:
Class类 的类表示正在运行的Java应用程序中的类和接口。 枚举是一种类,一个注释是一种界面。 每个数组也属于一个反映为类对象的类,该对象由具有相同元素类型和维数的所有数组共享。
原始Java类型( boolean , byte , char , short , int , long , float和double ),和关键字void也表示为类对象。
类没有公共构造函数。 相反, 类对象由 Java虚拟机 自动构建,因为加载了类,并且通过调用类加载器中的defineClass方法。。
**java 万物皆是Class类 **
【图片】
我们来看下Class类的源码,源码太多了,挑了几个重点:
public final class Class<T> implements java.io.Serializable,
Generic Declaration,
Type,
AnnotatedElement {
private static final int Annotation = 0x00002000;
private static final int ENUM =x00004000;
private static final int SYNTHETIC =x00001000;
private static native void registerNatives();
static {
registerNatives();
}
/*
* Private constructor. Only the Java Virtual Machine creates Class objects.
* This constructor is not used and prevents the default constructor being
* generated.
*/ private Class(ClassLoader loader) { //私有化的 构造器
// Initialize final field for classLoader. The initialization value of non-null
// prevents future JIT optimizations from assuming this final field is null.
classLoader = loader;
}
...
// Reflection data that might get invalidated when JVM TI RedefineClasses() is called
private static class ReflectionData<T> {
volatile Field[] declaredFields;//字段
volatile Field[] publicFields;
volatile Method[] declaredMethods;//方法
volatile Method[] publicMethods;
volatile Constructor<T>[] declaredConstructors;// 构造器
volatile Constructor<T>[] publicConstructors;
// Intermediate results for getFields and getMethods
volatile Field[] declaredPublicFields;
volatile Method[] declaredPublicMethods;
volatile Class<?>[] interfaces;//接口
// Value of classRedefinedCount when we created this ReflectionData instance
final int redefinedCount;
ReflectionData(int redefinedCount) {
this.redefinedCount = redefinedCount;
}
}
...
//注释数据
private volatile transient AnnotationData annotationData;
private AnnotationData annotationData() {
while (true) { // retry loop
AnnotationData annotationData = this.annotationData;
int classRedefinedCount = this.classRedefinedCount;
if (annotationData != null &&
annotationData.redefinedCount == classRedefinedCount) {
return annotationData;
}
// null or stale annotationData -> optimistically create new instance
AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
// try to install it
if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
// successfully installed new AnnotationData
return newAnnotationData;
}
}
}
...
我们可以发现Class也是类,是一种特殊的类,将我们定义普通类的共同的部分进行抽象,保存类的属性,方法, 构造方法 ,类名、包名、父类,注解等和类相关的信息。
Class类的构造方法是private, 只有JVM能创建Class实例 ,我们开发人员 是无法创建Class实例的,JVM在构造Class对象时,需要传入一个 类加载器 。
类也是可以用来存储数据的,Class类就像 普通类的模板 一样,用来保存“类所有相关信息”的类。
我们来继续看这个利用反射的例子: Class personClass = Person.class;
由于JVM为加载的 Person.class创建了对应的Class实例,并在该实例中保存了该 Person.class的所有信息,因此,如果获取了Class实例(personClass ),我们就可以通过这个Class实例获取到该实例对应的 Person类 的所有信息。
反射的使用
获取Class实例4种方式
- 通过对象调用 getClass() 方法来获取
Person p = new Person();
Class c = p1.getClass();
像这种已经创建了对象的,再去进行反射的话,有点多此一举。
一般是用于传过来的是Object类型的对象,不知道具体是什么类,再用这种方式比较靠谱
- 类名.class
Class c = Person.class;
这种需要提前知道导入类的包,程序性能更高,比较常用,通过此方式获取 Class 对象 ,Person类不会进行初始化
- 通过 Class 对象的 forName() 静态方法来获取,最常用的一种方式
Class c = Class.forName("com.zj.demotest.domain.Person");
这种只需传入类的全路径 , Class.forName会进行初始化initialization步骤 ,即静态初始化(会初始化类变量,静态代码块)。
- 通过类加载器对象的 loadClass() 方法
public class TestReflection {
public static void main(String[] args) throws ClassNotFoundException {
Person p = new Person();
Class c = p1.getClass();
Class c = Person.class;
Class c = Class.forName("com.zj.demotest.domain.Person");
//第中方式,类加载器
ClassLoader classLoader = TestReflection.class.getClassLoader();
Class c = classLoader.loadClass("com.zj.demotest.domain.Person");
System.out.println(c.equals(c2));
System.out.println(c.equals(c3));
System.out.println(c.equals(c4));
System.out.println(c.equals(c4));
}
}
loadClass的源码:
public Class<?> loadClass(String name) throws ClassNotFoundException {
return loadClass(name, false);
}
loadClass 传入的第二个参数是”false”,因此它不会对类进行连接这一步骤,根据 类的 生命周期 我们知道,如果一个类没有进行验证和准备的话,是无法进行初始化过程的,即 不会进行类初始化,静态代码块和静态对象也不会得到执行
我们将c1,c2,c3,c4进行 equals 比较
System.out.println(c.equals(c2));
System.out.println(c.equals(c3));
System.out.println(c.equals(c4));
System.out.println(c.equals(c4));
结果:
true true true true
因为Class实例在JVM中是唯一的,所以,上述方法获取的Class实例是同一个实例, 一个类在 JVM 中只会有一个 Class 实例
Class类常用的API
日常开发的时候,我们一般使用反射是为了 创建类实例(对象)、反射获取类的属性和调用类的方法
getName() | 获得类的完整名字 |
getFields() | 获得类的public类型的属性 |
getDeclaredFields() | 获得类的所有属性。包括 private 声明的和继承类 |
getMethods() | 获得类的public类型的方法 |
getDeclaredMethods() | 获得类的所有方法。包括 private 声明的和继承类 |
getMethod(String name, Class[] parameterTypes) | 获得类的特定方法,name参数指定方法的名字,parameterTypes 参数指定方法的参数类型。 |
getConstructors() | 获得类的public类型的构造方法 |
getConstructor(Class[] parameterTypes) | 获得类的特定构造方法,parameterTypes 参数指定构造方法的参数类型 |
newInstance() | 通过类的不带参数的构造方法创建这个类的一个对象 |
getSuperClass() | 用于返回表示该 Class 表示的任何类、接口、原始类型或任何 void 类型的 超类的Class(即父类) 。 |
… | … |
我们这边就不全部展开讲了,挑几个重点讲解一下
创建对象
- 调用class对象的 newInstance() 方法
Class c = Class.forName("com.zj.demotest.domain.Person");
Person p = (Person) c1.newInstance();
p.eat();
结果:
吃饭
注意:Person类必须有一个 无参的构造器 且 类的构造器的访问权限不能是private
- 使用指定构造方法 Constructor 来创建对象
如果我们非得让Person类的无参构造器设为private呢,我们可以获取对应的Constructor来创建对象
Class c = Class.forName("com.zj.demotest.domain.Person");
Constructor<Person> con = c.getDeclaredConstructor();
con.setAccessible(true);//允许访问
Person p = con.newInstance();
p.eat();
结果:
吃饭
注意:setAccessible()方法能在运行时 压制 Java语言访问控制检查(Java language access control checks),从而能任意调用 被私有化 保护的方法、域和构造方法。
由此我们可以发现** 单例模式不再安全,反射可破之!**
访问属性
Field getField(name) | 根据字段名获取某个public的field(包括父类) |
Field getDeclaredField(name) | 根据字段名获取当前类的某个field(不包括父类) |
Field[] getFields() | 获取所有public的field(包括父类) |
Field[] getDeclaredFields() | 获取当前类的所有field(不包括父类) |
我们来看一个例子:
public class TestReflection {
public static void main(String[] args) throws Exception {
Object p = new Student("li hua");
Class c = p.getClass();
Field f = c.getDeclaredField("name");//获取属性
f.setAccessible(true);//允许访问
Object val= f.get(p);
System.out.println(val);
}
static class Student {
private String name;
public Student(String name) {
this.name = name;
}
}
}
结果:
li hua
我们可以发现 反射可以破坏类的封装
调用方法
Method getMethod(name, Class…) | 获取某个public的Method(包括父类) |
Method getDeclaredMethod(name, Class…) | 获取当前类的某个Method(不包括父类) |
Method[] getMethods() | 获取所有public的Method(包括父类) |
Method[] getDeclaredMethods() | 获取当前类的所有Method(不包括父类) |
我们来看一个例子:
public class TestReflection {
public static void main(String[] args) throws Exception {
//获取私有方法,需要传参:方法名和参数
Method h = Student.class.getDeclaredMethod("setName",String.class);
h.setAccessible(true);
Student s =new Student();
System.out.println(s.name);
//传入目标对象,调用对应的方法
h.invoke(s,"xiao ming");
System.out.println(s.name);
}
static class Student {
private String name;
private void setName(String name) {
this.name = name;
}
}
}
结果:
null xiao ming
我们发现获取方法getMethod()时,需要传参 方法名和参数
这是因为.class文件中通常有 不止一个方法 ,获取方法getMethod()时,会去调用searchMethods方法循环遍历所有Method,然后根据 方法名和参数类型 找到唯一符合的Method返回。
我们知道类的方法是在JVM的方法区中 ,当我们new 多个对象时,属性会另外开辟堆空间存放,而方法只有一份,不会额外消耗内存,方法就像一套指令模板,谁都可以传入数据交给它执行,然后得到对应执行结果。
method.invoke(obj, args) 时传入目标对象,即可调用对应对象的方法
如果获取到的Method表示一个静态方法,调用静态方法时, 无需指定实例对象 ,所以invoke方法传入的第一个参数永远为null, method.invoke(null, args)
那如果 方法重写了呢, 反射依旧遵循 多态 的原则 。
反射的应用场景
如果平时我们只是写业务代码,很少会接触到直接使用反射机制的场景,毕竟我们可以直接new一个对象,性能比还反射要高。
但如果我们是工具框架的开发者,那一定非常熟悉,像 Spring/Spring Boot、MyBatis 等等框架中都大量使用反射机制, 反射被称为框架的灵魂
比如:
- Mybatis Plus可以让我们只写接口,不写实现类,就可以执行SQL
- 开发项目时,切换不同的数据库只需更改配置文件即可
- 类上加上@Component注解,Spring就帮我们创建对象
- 在Spring我们只需 @Value注解就读取到配置文件中的值
- 等等
扩展:反射配置文件
我们来模拟一个配置高于编码的例子
新建my.properties,将其放在resources的目录下
#Person类的包路径
className=com.zj.demotest.domain.Person
methodName=eat
Person类 还是本文 一直用的,在文章的开头有
最后我们来编写一个测试类
public class TestProp {
public static void main(String[] args) throws IOException, ClassNotFoundException, IllegalAccessException, InstantiationException, NoSuchMethodException, InvocationTargetException {
Properties properties = new Properties();
ClassLoader classLoader = TestProp.class.getClassLoader();
InputStream inputStream = classLoader.getResourceAsStream("my.properties");// 加载配置文件
properties.load(inputStream);
String className = properties.getProperty("className");
System.out.println("配置文件中的内容:className="+className);
String methodName = properties.getProperty("methodName");
System.out.println("配置文件中的内容:methodName="+methodName);
Class name = Class.forName(className);
Object object = name.newInstance();
Method method = name.getMethod(methodName);
method.invoke(object);
}
}
结果:
配置文件中的内容:className=com.zj.demotest.domain.Person
配置文件中的内容:methodName=eat
吃饭
紧接着,我们修改配置文件:
className=com.zj.demotest.domain.Person
methodName=eat
结果变为:
配置文件中的内容:className=com.zj.demotest.domain.Person
配置文件中的内容:methodName=Dance
跳舞
是不是很方便?
尾语
反射机制是一种功能强大的机制,让Java程序具有在 运行期 分析类以及修改其本身状态或行为的能力 。
对于特定的复杂系统编程任务,它是非常必要的,为各种框架提供开箱即用的功能提供了便利,为解耦合提供了保障机制。
但是世事无绝对,反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接访问对象要差点(JIT优化后,对于框架来说实际是影响不大的),还会增加程序的复杂性等(明明直接new一下就能解决的事情,非要写一大段代码)。