目录
- 一、摘要
- 二、方案实践
- 2.1、引入 redis 组件
- 2.2、添加 redis 环境配置
- 2.3、编写服务验证逻辑,通过 aop 代理方式实现
- 2.4、在相关的业务接口上,增加SubmitLimit注解即可
- 三、小结
一、摘要
在上一篇文章中,我们详细的介绍了随着下单流量逐渐上升,为了降低数据库的访问压力,通过请求唯一ID+redis分布式锁来防止接口重复提交,流程图如下!
每次提交的时候,需要先调用后端服务获取请求唯一ID,然后才能提交。
对于这样的流程,不少的同学可能会感觉到非常鸡肋,尤其是单元测试,需要每次先获取submitToken值,然后才能提交!
能不能不用这么麻烦,直接服务端通过一些规则组合,生成本次请求唯一ID呢?
答案是可以的!
今天我们就一起来看看,如何通过服务端来完成请求唯一 ID 的生成?
二、方案实践
我们先来看一张图,这张图就是本次方案的核心流程图。
实现的逻辑,流程如下:
- 1.用户点击提交按钮,服务端接受到请求后,通过规则计算出本次请求唯一ID值
- 2.使用redis的分布式锁服务,对请求 ID 在限定的时间内尝试进行加锁,如果加锁成功,继续后续流程;如果加锁失败,说明服务正在处理,请勿重复提交
- 3.最后一步,如果加锁成功后,需要将锁手动释放掉,以免再次请求时,提示同样的信息
引入缓存服务后,防止重复提交的大体思路如上,实践代码如下!
2.1、引入 redis 组件
本次 demo 项目是基于SpringBoot版本进行构建,添加相关的redis依赖环境如下:
<!-- 引入springboot --> | |
<parent> | |
<groupId>org.springframework.boot</groupId> | |
<artifactId>spring-boot-starter-parent</artifactId> | |
<version>.1.0.RELEASE</version> | |
</parent> | |
...... | |
<!-- Redis相关依赖包,采用jedis作为客户端 --> | |
<dependency> | |
<groupId>org.springframework.boot</groupId> | |
<artifactId>spring-boot-starter-data-redis</artifactId> | |
<exclusions> | |
<exclusion> | |
<groupId>redis.clients</groupId> | |
<artifactId>jedis</artifactId> | |
</exclusion> | |
<exclusion> | |
<artifactId>lettuce-core</artifactId> | |
<groupId>io.lettuce</groupId> | |
</exclusion> | |
</exclusions> | |
</dependency> | |
<dependency> | |
<groupId>redis.clients</groupId> | |
<artifactId>jedis</artifactId> | |
</dependency> | |
<dependency> | |
<groupId>org.apache.commons</groupId> | |
<artifactId>commons-pool</artifactId> | |
</dependency> |
2.2、添加 redis 环境配置
在全局配置application.properties文件中,添加redis相关服务配置如下
# 项目名 | |
spring.application.name=springboot-example-submit | |
# Redis数据库索引(默认为) | |
spring.redis.database= | |
# Redis服务器地址 | |
spring.redis.host=.0.0.1 | |
# Redis服务器连接端口 | |
spring.redis.port= | |
# Redis服务器连接密码(默认为空) | |
spring.redis.password= | |
# Redis服务器连接超时配置 | |
spring.redis.timeout= | |
# 连接池配置 | |
spring.redis.jedis.pool.max-active= | |
spring.redis.jedis.pool.max-wait= | |
spring.redis.jedis.pool.max-idle= | |
spring.redis.jedis.pool.min-idle= | |
spring.redis.jedis.pool.time-between-eviction-runs= |
2.3、编写服务验证逻辑,通过 aop 代理方式实现
首先创建一个@SubmitLimit注解,通过这个注解来进行方法代理拦截!
@Retention(RetentionPolicy.RUNTIME) | |
@Target({ElementType.METHOD}) | |
@Documented | |
public @interface SubmitLimit { | |
/** | |
* 指定时间内不可重复提交(仅相对上一次发起请求时间差),单位毫秒 | |
* @return | |
*/ | |
int waitTime() default ; | |
/** | |
* 指定请求头部key,可以组合生成签名 | |
* @return | |
*/ | |
String[] customerHeaders() default {}; | |
/** | |
* 自定义重复提交提示语 | |
* @return | |
*/ | |
String customerTipMsg() default ""; | |
} | |
编写方法代理服务,增加防止重复提交的验证,实现了逻辑如下!
public class SubmitLimitAspect { | |
private static final Logger LOGGER = LoggerFactory.getLogger(SubmitLimitAspect.class); | |
/** | |
* redis分割符 | |
*/ | |
private static final String REDIS_SEPARATOR = ":"; | |
/** | |
* 默认锁对应的值 | |
*/ | |
private static final String DEFAULT_LOCK_VALUE = "DEFAULT_SUBMIT_LOCK_VALUE"; | |
/** | |
* 默认重复提交提示语 | |
*/ | |
private static final String DEFAULT_TIP_MSG = "服务正在处理,请勿重复提交!"; | |
private String applicationName; | |
private RedisLockService redisLockService; | |
/** | |
* 方法调用环绕拦截 | |
*/ | |
public Object doAround(ProceedingJoinPoint joinPoint){ | |
HttpServletRequest request = getHttpServletRequest(); | |
if(Objects.isNull(request)){ | |
return ResResult.getSysError("请求参数不能为空!"); | |
} | |
//获取注解配置的参数 | |
SubmitLimit submitLimit = getSubmitLimit(joinPoint); | |
//组合生成key,通过key实现加锁和解锁 | |
String lockKey = buildSubmitLimitKey(joinPoint, request, submitLimit.customerHeaders()); | |
//尝试在指定的时间内加锁 | |
boolean lock = redisLockService.tryLock(lockKey, DEFAULT_LOCK_VALUE, Duration.ofMillis(submitLimit.waitTime())); | |
if(!lock){ | |
String tipMsg = StringUtils.isEmpty(submitLimit.customerTipMsg()) ? DEFAULT_TIP_MSG : submitLimit.customerTipMsg(); | |
return ResResult.getSysError(tipMsg); | |
} | |
try { | |
//继续执行后续流程 | |
return execute(joinPoint); | |
} finally { | |
//执行完毕之后,手动将锁释放 | |
redisLockService.releaseLock(lockKey, DEFAULT_LOCK_VALUE); | |
} | |
} | |
/** | |
* 执行任务 | |
* @param joinPoint | |
* @return | |
*/ | |
private Object execute(ProceedingJoinPoint joinPoint){ | |
try { | |
return joinPoint.proceed(); | |
} catch (CommonException e) { | |
return ResResult.getSysError(e.getMessage()); | |
} catch (Throwable e) { | |
LOGGER.error("业务处理发生异常,错误信息:",e); | |
return ResResult.getSysError(ResResultEnum.DEFAULT_ERROR_MESSAGE); | |
} | |
} | |
/** | |
* 获取请求对象 | |
* @return | |
*/ | |
private HttpServletRequest getHttpServletRequest(){ | |
RequestAttributes ra = RequestContextHolder.getRequestAttributes(); | |
ServletRequestAttributes sra = (ServletRequestAttributes)ra; | |
HttpServletRequest request = sra.getRequest(); | |
return request; | |
} | |
/** | |
* 获取注解值 | |
* @param joinPoint | |
* @return | |
*/ | |
private SubmitLimit getSubmitLimit(JoinPoint joinPoint){ | |
MethodSignature methodSignature = (MethodSignature) joinPoint.getSignature(); | |
Method method = methodSignature.getMethod(); | |
SubmitLimit submitLimit = method.getAnnotation(SubmitLimit.class); | |
return submitLimit; | |
} | |
/** | |
* 组合生成lockKey | |
* 生成规则:项目名+接口名+方法名+请求参数签名(对请求头部参数+请求body参数,取SHA值) | |
* @param joinPoint | |
* @param request | |
* @param customerHeaders | |
* @return | |
*/ | |
private String buildSubmitLimitKey(JoinPoint joinPoint, HttpServletRequest request, String[] customerHeaders){ | |
//请求参数=请求头部+请求body | |
String requestHeader = getRequestHeader(request, customerHeaders); | |
String requestBody = getRequestBody(joinPoint.getArgs()); | |
String requestParamSign = DigestUtils.shaHex(requestHeader + requestBody); | |
String submitLimitKey = new StringBuilder() | |
.append(applicationName) | |
.append(REDIS_SEPARATOR) | |
.append(joinPoint.getSignature().getDeclaringType().getSimpleName()) | |
.append(REDIS_SEPARATOR) | |
.append(joinPoint.getSignature().getName()) | |
.append(REDIS_SEPARATOR) | |
.append(requestParamSign) | |
.toString(); | |
return submitLimitKey; | |
} | |
/** | |
* 获取指定请求头部参数 | |
* @param request | |
* @param customerHeaders | |
* @return | |
*/ | |
private String getRequestHeader(HttpServletRequest request, String[] customerHeaders){ | |
if (Objects.isNull(customerHeaders)) { | |
return ""; | |
} | |
StringBuilder sb = new StringBuilder(); | |
for (String headerKey : customerHeaders) { | |
sb.append(request.getHeader(headerKey)); | |
} | |
return sb.toString(); | |
} | |
/** | |
* 获取请求body参数 | |
* @param args | |
* @return | |
*/ | |
private String getRequestBody(Object[] args){ | |
if (Objects.isNull(args)) { | |
return ""; | |
} | |
StringBuilder sb = new StringBuilder(); | |
for (Object arg : args) { | |
if (arg instanceof HttpServletRequest | |
|| arg instanceof HttpServletResponse | |
|| arg instanceof MultipartFile | |
|| arg instanceof BindResult | |
|| arg instanceof MultipartFile[] | |
|| arg instanceof ModelMap | |
|| arg instanceof Model | |
|| arg instanceof ExtendedServletRequestDataBinder | |
|| arg instanceof byte[]) { | |
continue; | |
} | |
sb.append(JacksonUtils.toJson(arg)); | |
} | |
return sb.toString(); | |
} | |
} |
部分校验逻辑用到了redis分布式锁,具体实现逻辑如下:
/** | |
* redis分布式锁服务类 | |
* 采用LUA脚本实现,保证加锁、解锁操作原子性 | |
* | |
*/ | |
public class RedisLockService { | |
/** | |
* 分布式锁过期时间,单位秒 | |
*/ | |
private static final Long DEFAULT_LOCK_EXPIRE_TIME = L; | |
private StringRedisTemplate stringRedisTemplate; | |
/** | |
* 尝试在指定时间内加锁 | |
* @param key | |
* @param value | |
* @param timeout 锁等待时间 | |
* @return | |
*/ | |
public boolean tryLock(String key,String value, Duration timeout){ | |
long waitMills = timeout.toMillis(); | |
long currentTimeMillis = System.currentTimeMillis(); | |
do { | |
boolean lock = lock(key, value, DEFAULT_LOCK_EXPIRE_TIME); | |
if (lock) { | |
return true; | |
} | |
try { | |
Thread.sleep(L); | |
} catch (InterruptedException e) { | |
Thread.interrupted(); | |
} | |
} while (System.currentTimeMillis() < currentTimeMillis + waitMills); | |
return false; | |
} | |
/** | |
* 直接加锁 | |
* @param key | |
* @param value | |
* @param expire | |
* @return | |
*/ | |
public boolean lock(String key,String value, Long expire){ | |
String luaScript = "if redis.call('setnx', KEYS[], ARGV[1]) == 1 then return redis.call('expire', KEYS[1], ARGV[2]) else return 0 end"; | |
RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript, Long.class); | |
Long result = stringRedisTemplate.execute(redisScript, Collections.singletonList(key), value, String.valueOf(expire)); | |
return result.equals(Long.valueOf()); | |
} | |
/** | |
* 释放锁 | |
* @param key | |
* @param value | |
* @return | |
*/ | |
public boolean releaseLock(String key,String value){ | |
String luaScript = "if redis.call('get', KEYS[]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end"; | |
RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript, Long.class); | |
Long result = stringRedisTemplate.execute(redisScript, Collections.singletonList(key),value); | |
return result.equals(Long.valueOf()); | |
} | |
} |
部分代码使用到了序列化相关类JacksonUtils,源码如下:
public class JacksonUtils { | |
private static final Logger LOGGER = LoggerFactory.getLogger(JacksonUtils.class); | |
private static final ObjectMapper objectMapper = new ObjectMapper(); | |
static { | |
// 对象的所有字段全部列入 | |
objectMapper.setSerializationInclusion(JsonInclude.Include.ALWAYS); | |
// 忽略未知的字段 | |
objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false); | |
// 读取不认识的枚举时,当null值处理 | |
objectMapper.configure(DeserializationFeature.READ_UNKNOWN_ENUM_VALUES_AS_NULL, true); | |
// 序列化忽略未知属性 | |
objectMapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false); | |
//忽略字段大小写 | |
objectMapper.configure(MapperFeature.ACCEPT_CASE_INSENSITIVE_PROPERTIES, true); | |
objectMapper.configure(JsonParser.Feature.AUTO_CLOSE_SOURCE, true); | |
SimpleModule module = new SimpleModule(); | |
module.addSerializer(Long.class, ToStringSerializer.instance); | |
module.addSerializer(Long.TYPE, ToStringSerializer.instance); | |
objectMapper.registerModule(module); | |
} | |
public static String toJson(Object object) { | |
if (object == null) { | |
return null; | |
} | |
try { | |
return objectMapper.writeValueAsString(object); | |
} catch (Exception e) { | |
LOGGER.error("序列化失败",e); | |
} | |
return null; | |
} | |
public static <T> T fromJson(String json, Class<T> classOfT) { | |
if (json == null) { | |
return null; | |
} | |
try { | |
return objectMapper.readValue(json, classOfT); | |
} catch (Exception e) { | |
LOGGER.error("反序列化失败",e); | |
} | |
return null; | |
} | |
public static <T> T fromJson(String json, Type typeOfT) { | |
if (json == null) { | |
return null; | |
} | |
try { | |
return objectMapper.readValue(json, objectMapper.constructType(typeOfT)); | |
} catch (Exception e) { | |
LOGGER.error("反序列化失败",e); | |
} | |
return null; | |
} | |
} |
2.4、在相关的业务接口上,增加SubmitLimit注解即可
@RestController | |
@RequestMapping("order") | |
public class OrderController { | |
@Autowired | |
private OrderService orderService; | |
/** | |
* 下单,指定请求头部参与请求唯一值计算 | |
* @param request | |
* @return | |
*/ | |
@SubmitLimit(customerHeaders = {"appId", "token"}, customerTipMsg = "正在加紧为您处理,请勿重复下单!") | |
@PostMapping(value = "confirm") | |
public ResResult confirmOrder(@RequestBody OrderConfirmRequest request){ | |
//调用订单下单相关逻辑 | |
orderService.confirm(request); | |
return ResResult.getSuccess(); | |
} | |
} |
其中最关键的一个步就是将唯一请求 ID 的生成,放在服务端通过组合来实现,在保证防止接口重复提交的效果同时,也可以显著的降低接口测试复杂度!
三、小结
本次方案相比于上一个方案,最大的改进点在于:将接口请求唯一 ID 的生成逻辑,放在服务端通过规则组合来实现,不需要前端提交接口的时候强制带上这个参数,在满足防止接口重复提交的要求同时,又能减少前端和测试提交接口的复杂度!
需要特别注意的是:使用redis的分布式锁,推荐单机环境,如果redis是集群环境,可能会导致锁短暂无效!