零、前言
1.canvas本身提供了很多绘制基本图形的方法,普通绘制基本满足 2.但是更高级的绘制canvas便束手无策,但它的一个方法却将图形的绘制连接到了另一个次元 3.下面进入Path的世界,[注]:本文只说Path,关于绘制只要使用Canvas.drawPath(Path,Paint)
即可 4.本文将对Path的所有API
进行测试。
一、引:认识Path
例1.绘制网格
在Canvas篇我用Path画过一个网格辅助,在这里分析一下 moveTo相当于抬笔到某点,lineTo表示画下到某点
/**
* 绘制网格:注意只有用path才能绘制虚线
*
* @param step 小正方形边长
* @param winSize 屏幕尺寸
*/
public static Path gridPath(int step, Point winSize) {
//创建path
Path path = new Path();
//每间隔step,将笔点移到(0, step * i),然后画线到(winSize.x, step * i)
for (int i = 0; i < winSize.y / step + 1; i++) {
path.moveTo(0, step * i);
path.lineTo(winSize.x, step * i);
}
for (int i = 0; i < winSize.x / step + 1; i++) {
path.moveTo(step * i, 0);
path.lineTo(step * i, winSize.y);
}
return path;
}
//准备画笔
mRedPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mRedPaint.setColor(Color.RED);
mRedPaint.setStrokeWidth(2);
mRedPaint.setStyle(Paint.Style.STROKE);
//设置虚线效果new float[]{可见长度, 不可见长度},偏移值
mRedPaint.setPathEffect(new DashPathEffect(new float[]{10, 5}, 0));
//绘制
Path path = HelpPath.gridPath(50, mWinSize);
canvas.drawPath(path, mRedPaint);
例2.绘制N角星
曾经花了半天研究五角星的构造,通过两个圆,发现了N角星绘制的通法 又用半天用JavaScript的Canvas实现了在浏览器上的绘制,当然Android也不示弱:
1).通用n角星路径绘制:(基本上都是一些点位和角度的计算,然后连线)
/**
* n角星路径
*
* @param num 几角星
* @param R 外接圆半径
* @param r 内接圆半径
* @return n角星路径
*/
public static Path nStarPath(int num, float R, float r) {
Path path = new Path();
float perDeg = 360 / num;
float degA = perDeg / 2 / 2;
float degB = 360 / (num - 1) / 2 - degA / 2 + degA;
path.moveTo(
(float) (Math.cos(rad(degA + perDeg * 0)) * R + R * Math.cos(rad(degA))),
(float) (-Math.sin(rad(degA + perDeg * 0)) * R + R));
for (int i = 0; i < num; i++) {
path.lineTo(
(float) (Math.cos(rad(degA + perDeg * i)) * R + R * Math.cos(rad(degA))),
(float) (-Math.sin(rad(degA + perDeg * i)) * R + R));
path.lineTo(
(float) (Math.cos(rad(degB + perDeg * i)) * r + R * Math.cos(rad(degA))),
(float) (-Math.sin(rad(degB + perDeg * i)) * r + R));
}
path.close();
return path;
}
/**
* 角度制化为弧度制
*
* @param deg 角度
* @return 弧度
*/
public static float rad(float deg) {
return (float) (deg * Math.PI / 180);
}
2).当外接圆和内切圆的半径成一定的关系,可形成正多角星,和正多边形
正多角星:
/**
* 画正n角星的路径:
*
* @param num 角数
* @param R 外接圆半径
* @return 画正n角星的路径
*/
public static Path regularStarPath(int num, float R) {
float degA, degB;
if (num % 2 == 1) {//奇数和偶数角区别对待
degA = 360 / num / 2 / 2;
degB = 180 - degA - 360 / num / 2;
} else {
degA = 360 / num / 2;
degB = 180 - degA - 360 / num / 2;
}
float r = (float) (R * Math.sin(rad(degA)) / Math.sin(rad(degB)));
return nStarPath(num, R, r);
}
正多边形:
/**
* 画正n边形的路径
*
* @param num 边数
* @param R 外接圆半径
* @return 画正n边形的路径
*/
public static Path regularPolygonPath(int num, float R) {
float r = (float) (R * (Math.cos(rad(360 / num / 2))));//!!一点解决
return nStarPath(num, R, r);
}
/**
* 角度制化为弧度制
*
* @param deg 角度
* @return 弧度
*/
public static float rad(float deg) {
return (float) (deg * Math.PI / 180);
}
这两个小栗子作为引,应该对Path的能为有一定的了解了吧,下面将正式对Path做系统地介绍
二、Path的详细介绍
Path定位: 是一个类,直接继承自Object,源码行数879(一盏茶的功夫就看完了),算个小类但
native方法很多,说明它跟底层打交道的,感觉不好惹 下面看一下Path的公共方法:(基本创建相关、添加相关、设置相关,其他)注:为了好看,以下所有演示为横屏且canvas的坐标原点移至(800,500),所有蓝线为辅助线
1.moveTo----lineTo----close
moveTo:抬笔到某点 lineTo:画线到某点 close:闭合首位
Path path = new Path();
path.moveTo(0, 0);
path.lineTo(100, 200);
Path path = new Path();
path.moveTo(0, 0);
path.lineTo(100, 200);
path.lineTo(200, 100);
Path path = new Path();
path.moveTo(0, 0);
path.lineTo(100, 200);
path.lineTo(200, 100);
path.close();
2.rMoveTo----rLineTo
rMoveTo:从路径尾部为起点,抬笔 rLineTo:从路径尾部为起点,画直线 其实也不难理解,就是点的参考系从canvas左上角移变成路径尾部,看一下就知道了:
Path path = new Path();
path.rMoveTo(0,0);
path.rLineTo(100, 200);
path.rLineTo(200, 100);
path.close();
3.绘制弧:arcTo(矩形范围,起点,终点,)
RectF rectF = new RectF(100, 100, 500, 300);
path.moveTo(0, 0);
//arcTo(矩形范围,起点,终点,是否独立--默认false)
//path.arcTo(rectF, 0, 45, true);
path.arcTo(rectF, 0, 45, false);
剩下的贝塞尔曲线这个大头放在本篇最后
三、路径添加:addXXX
可以看出齐刷刷的Direction,先看看它是什么鬼: 是一个枚举,只有CW(顺时针)和CCW(逆时针),这里暂且按下,都使用CW,后文详述:
public enum Direction {
/** clockwise */
CW (0), // must match enum in SkPath.h---顺时针
/** counter-clockwise */
CCW (1); // must match enum in SkPath.h---逆时针
Direction(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
1.加矩形路径:
1).普通矩形:addRect(左,上,右,下)
RectF rectF = new RectF(100, 100, 500, 300);
path.addRect(rectF, Path.Direction.CW);//顺时针画矩形
2).圆角矩形:addRoundRect(矩形域,圆角x,圆角y)
RectF rectF = new RectF(100, 100, 500, 300);
path.addRoundRect(rectF, 50, 50, Path.Direction.CW);//顺时针画圆角矩形
3).用4点控制圆角:addRoundRect(矩形域,8数,方向)
RectF rectF = new RectF(100, 100, 500, 300);
path.addRoundRect(rectF, new float[]{
150, 150,//左上圆角x,y
0, 0,//右上圆角x,y
450, 250,//右下圆角x,y
250, 200//左下圆角x,y
}, Path.Direction.CW);//顺时针画
2.加椭圆路径:addOval(矩形域,方向)
RectF rectF = new RectF(100, 100, 500, 300);
path.addOval(rectF, Path.Direction.CW);
3.加圆路径:addCircle(圆心x,圆心y,方向)
path.addCircle(100,100,100,Path.Direction.CW);
4.加弧线路径:addArc(矩形域,起始角度终止角度)
RectF rectF = new RectF(100, 100, 500, 300);
path.addArc(rectF,0,145);
5.添加路径:
1).普通添加addPath(Path)
path.addCircle(100,100,100,Path.Direction.CW);
Path otherPath = new Path();
otherPath.moveTo(0, 0);
otherPath.lineTo(100, 100);
path.addPath(otherPath);
2).偏移添加:addPath(Path,偏移x,偏移y)
path.addCircle(100,100,100,Path.Direction.CW);
Path otherPath = new Path();
otherPath.moveTo(0, 0);
otherPath.lineTo(100, 100);
path.addPath(otherPath,200,200);
3).矩阵变换添加:addPath(Path,Matrix)
path.addCircle(100,100,100,Path.Direction.CW);
Path otherPath = new Path();
otherPath.moveTo(0, 0);
otherPath.lineTo(100, 100);
Matrix matrix = new Matrix();
matrix.setValues(new float[]{
1, 0, 100,
0, .5f, 150,
0, 0, 1
});
path.addPath(otherPath, matrix);
四、其他操作:
1.细碎小点综述:
path.reset();//清空path,保留填充类型
//path.rewind();//清空path,保留数据结构
path.isEmpty()//是否为空
path.isRect(new RectF());
path.isConvex();
path.isInverseFillType();
path.set(otherPath);//清空path后添加新Path
// path.offset(200,200);//平移
// path.transform(matrix);//矩阵变换
Path tempPath = new Path();
// path.offset(200, 200, tempPath);//基于path平移注入tempPath,path不变
path.transform(matrix, tempPath);//基于path变换注入tempPath,path不变
canvas.drawPath(path, mRedPaint);
canvas.drawPath(tempPath, mRedPaint);
2.顺时针CW和逆时针CCW的区别
1).setLastPoint(x,y):设置最后一点
Path相当于将点按顺序保存,setLastPoint(x,y)方法则是将最后一个点换掉
RectF rectF = new RectF(100, 100, 500, 300);
path.addRect(rectF, Path.Direction.CW);//顺时针画矩形
path.setLastPoint(200, 200);
canvas.drawPath(path, mRedPaint);
RectF rectF = new RectF(100, 100, 500, 300);
path.addRect(rectF, Path.Direction.CCW);//顺时针画矩形
path.setLastPoint(200, 200);
canvas.drawPath(path, mRedPaint);
3.边界计算:
Path starPath = CommonPath.nStarPath(6, 100, 50);
RectF rectF = new RectF();//自备矩形区域
starPath.computeBounds(rectF, true);
canvas.drawPath(starPath, mRedPaint);
canvas.drawRect(rectF,mHelpPaint);
五、路径的填充
1.初识路径的填充:
1)左图:两个都是顺时针:
mRedPaint.setStyle(Paint.Style.FILL);
RectF rectF = new RectF(100, 100, 500, 300);
path.addRect(rectF, Path.Direction.CW);//顺时针画矩形
path.addRect(200, 0, 400, 400, Path.Direction.CW);//顺时针画矩形
2)右图:横的顺时针,竖的逆时针
mRedPaint.setStyle(Paint.Style.FILL);
RectF rectF = new RectF(100, 100, 500, 300);
path.addRect(rectF, Path.Direction.CW);//顺时针画矩形
path.addRect(200, 0, 400, 400, Path.Direction.CCW);//逆时针画矩形
感觉向两个水涡,同向加剧,反向中间就抵消了
2.填充的环绕原则:---在自然科学(如数学,物理学)中的概念
非零环绕原则(WINDING)----默认 反零环绕原则(INVERSE_WINDING) 奇偶环绕原则(EVEN_ODD) 反奇偶环绕原则(INVERSE_EVEN_ODD)
public enum FillType {
WINDING (0),
EVEN_ODD (1),
INVERSE_WINDING (2),
INVERSE_EVEN_ODD(3);
FillType(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
Path.FillType fillType = path.getFillType();//获取类型
path.setFillType(Path.FillType.XXXXXX)//设置类型
//绘制的测试五角星
path.moveTo(100, 200);
path.lineTo(500, 200);
path.lineTo(200, 400);
path.lineTo(300, 50);
path.lineTo(400, 400);
path.close();
1).非零环绕数规则:WINDING
根据我个人的理解(仅供参考):在非零环绕数规则下
判断一点在不在图形内:从点引射线P,
遇到顺时针边+1
遇到逆时针边-1
结果0,不在,否则,在
2).奇偶环绕数规则:EVEN_ODD
根据我个人的理解(仅供参考):奇偶环绕数规则
判断一点在不在图形内(非定点): 从点引射线P,看与图形交点个数 奇数在,偶数,不在
3).反非零环绕数规则和反奇偶环绕数规则:
就是和上面相比,该填充的不填充,不填充的填充
这样看来图形的顺时针或逆时针绘制对于填充是非常重要的 综合来说奇偶原则比较简单粗暴,但非零原则作为默认方式体现了它的通用性
六、布尔运算OP:(两个路径之间的运算)
如果说环绕原则是一个Path的自我纠结,那么OP就是两个路径之间的勾心斗角
Path right = new Path();
Path left = new Path();
left.addCircle(0, 0, 100, Path.Direction.CW);
right.addCircle(100, 0, 100, Path.Direction.CW);
//left.op(right, Path.Op.DIFFERENCE);//差集----晕,咬了一口硫酸
//left.op(right, Path.Op.REVERSE_DIFFERENCE);//反差集----赔了夫人又折兵
//left.op(right, Path.Op.INTERSECT);//交集----与你不同的都不是我
//left.op(right, Path.Op.UNION);//并集----在一起,在一起
left.op(right, Path.Op.XOR);//异或集---我恨你,我也恨你
canvas.drawPath(left, mRedPaint);
七、Path动画:PathMeasure
init方法里:
//测量路径
PathMeasure pathMeasure = new PathMeasure(mStarPath, false);
//使用ValueAnimator
ValueAnimator pathAnimator = ValueAnimator.ofFloat(1, 0);
pathAnimator.setDuration(5000);
pathAnimator.addUpdateListener(animation -> {
float value = (Float) animation.getAnimatedValue();
//使用画笔虚线效果+偏移
DashPathEffect effect = new DashPathEffect(
new float[]{pathMeasure.getLength(), pathMeasure.getLength()},
value * pathMeasure.getLength());
mRedPaint.setPathEffect(effect);
invalidate();
});
pathAnimator.start();
OnDraw方法里:
canvas.drawPath(mStarPath, mRedPaint);
八、贝塞尔曲线简述:
如果说Path是Canvas为了高级绘制留下的窗子那么贝塞尔曲线则Path为了更高级的绘制而留下的门 由于操作的复杂性,这里并不过渡深入,以后有需求的话会专门开一篇
1.简单认识:(图来源网络)
一阶贝塞尔 | 二阶贝塞尔 | 三阶贝塞尔 |
2.二阶贝塞尔曲线示例:
public class Bezier2View extends View {
private Paint mHelpPaint;//辅助画笔
private Paint mPaint;//贝塞尔曲线画笔
private Path mBezierPath;//贝塞尔曲线路径
//起点
private PointF start = new PointF(0, 0);
//终点
private PointF end = new PointF(400, 0);
//控制点
private PointF control = new PointF(200, 200);
private Picture mPicture;//坐标系和网格的Canvas元件
private Point mCoo;//坐标系
public Bezier2View(Context context) {
this(context, null);
}
public Bezier2View(Context context, @Nullable AttributeSet attrs) {
super(context, attrs);
init();
}
private void init() {
//贝塞尔曲线画笔
mPaint = new Paint();
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setColor(Color.parseColor("#88EC17F3"));
mPaint.setStrokeWidth(8);
//辅助线画笔
resetHelpPaint();
recordBg();//初始化时录制坐标系和网格--避免在Ondraw里重复调用
mBezierPath = new Path();
}
/**
* 初始化时录制坐标系和网格--避免在Ondraw里重复调用
*/
private void recordBg() {
//准备屏幕尺寸
Point winSize = new Point();
mCoo = new Point(800, 500);
Utils.loadWinSize(getContext(), winSize);
Paint gridPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mPicture = new Picture();
Canvas recordCanvas = mPicture.beginRecording(winSize.x, winSize.y);
//绘制辅助网格
HelpDraw.drawGrid(recordCanvas, winSize, gridPaint);
//绘制坐标系
HelpDraw.drawCoo(recordCanvas, mCoo, winSize, gridPaint);
mPicture.endRecording();
}
/**
* 重置辅助画笔
*/
private void resetHelpPaint() {
mHelpPaint = new Paint();
mHelpPaint.setColor(Color.BLUE);
mHelpPaint.setStrokeWidth(2);
mHelpPaint.setStyle(Paint.Style.STROKE);
mHelpPaint.setPathEffect(new DashPathEffect(new float[]{10, 5}, 0));
mHelpPaint.setStrokeCap(Paint.Cap.ROUND);
}
@Override
public boolean onTouchEvent(MotionEvent event) {
// 根据触摸位置更新控制点,并提示重绘
control.x = event.getX() - mCoo.x;
control.y = event.getY() - mCoo.y;
invalidate();
return true;
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
canvas.save();
canvas.translate(mCoo.x, mCoo.y);
drawHelpElement(canvas);//绘制辅助工具--控制点和基准选
// 绘制贝塞尔曲线
mBezierPath.moveTo(start.x, start.y);
mBezierPath.quadTo(control.x, control.y, end.x, end.y);
canvas.drawPath(mBezierPath, mPaint);
mBezierPath.reset();//清空mBezierPath
canvas.restore();
canvas.drawPicture(mPicture);
}
/**
* 绘制辅助工具--控制点和基准选
*
* @param canvas
*/
private void drawHelpElement(Canvas canvas) {
// 绘制数据点和控制点
mHelpPaint.setColor(Color.parseColor("#8820ECE2"));
mHelpPaint.setStrokeWidth(20);
canvas.drawPoint(start.x, start.y, mHelpPaint);
canvas.drawPoint(end.x, end.y, mHelpPaint);
canvas.drawPoint(control.x, control.y, mHelpPaint);
// 绘制辅助线
resetHelpPaint();
canvas.drawLine(start.x, start.y, control.x, control.y, mHelpPaint);
canvas.drawLine(end.x, end.y, control.x, control.y, mHelpPaint);
}
}
效果如下:(模拟器+录屏软件+AS有点卡,手机上演示很流畅的)
3.三阶贝塞尔的简单演示:
mRedPaint.setStrokeWidth(5);
mRedPaint.setStrokeCap(Paint.Cap.ROUND);
path.moveTo(0, 0);//定点1_x,定点1_y
//(控制点1_X,控制点1_y,控制点2_x,控制点2_y,定点2_x,定点2_y)
path.cubicTo(100, 100, 300, -300, 600, 0);
好了,Path完结散花
后记:捷文规范
1.本文成长记录及勘误表
项目源码 | 日期 | 备注 |
V0.1--无 | 2018-11-6 | Android关于Path你所知道的和不知道的一切 |
2.声明
1----本文由张风捷特烈原创,转载请注明 2----欢迎广大编程爱好者共同交流 3----个人能力有限,如有不正之处欢迎大家批评指证,必定虚心改正 4----看到这里,我在此感谢你的喜欢与支持