一:数据库分片方案
- 客户端代理: 分片逻辑在应用端,封装在jar包中,通过修改或者封装JDBC层来实现。 当当网的 Sharding-JDBC 、阿里的TDDL是两种比较常用的实现。
- 中间件代理: 在应用和数据中间加了一个代理层。分片逻辑统一维护在中间件服务中。 我们现在谈的 Mycat、360的Atlas、网易的DDB等等都是这种架构的实现
二:Sharding-JDBC
Sharding-JDBC:
Sharding-JDBC是一个开源的适用于微服务的分布式数据访问基础类库,它始终以云原生的基础开发套件为目标。
Sharding-JDBC定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,未使用中间层,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式,可理解为增强版的JDBC驱动,旧代码迁移成本几乎为零。
Sharding-JDBC完整的实现了分库分表,读写分离和分布式主键功能,并初步实现了柔性事务。从2016年开源至今,在经历了整体架构的数次精炼以及稳定性打磨后,如今它已积累了足够的底蕴,相信可以成为开发者选择技术组件时的一个参考。
1.分库分表
- SQL 解析功能完善,支持聚合,分组,排序,LIMIT,TOP等查询,并且支持级联表以及笛卡尔积的表查询
- 支持内、外连接查询
- 分片策略灵活,可支持=,BETWEEN,IN等多维度分片,也可支持多分片键共用,以及自定义分片策略
- 基于Hint的强制分库分表路由
2.读写分离
- 一主多从的读写分离配置,可配合分库分表使用
- 基于Hint的强制主库路由
3.柔性事务
- 最大努力送达型事务
- TCC型事务(TBD)
4.分布式主键
- 统一的分布式基于时间序列的ID生成器
5.兼容性
- 可适用于任何基于java的ORM框架,如:JPA, Hibernate, mybatis , Spring JDBC Template或直接使用JDBC
- 可基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid等
- 理论上可支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL
6.灵活多样的配置
- Java
- YAML
- Inline表达式
- Spring命名空间
- Spring boot starter
7.分布式治理能力 (2.0新功能)
- 配置集中化与动态化,可支持数据源、表与分片策略的动态切换(2.0.0.M1)
- 客户端的数据库治理,数据源失效自动切换(2.0.0.M2)
- 基于Open Tracing协议的APM信息输出(2.0.0.M3)
架构图
三:sharding-jdbc + jpa + druid集成
1. 数据库准备
-- 在db数据库上分别创建t_order_0、t_order_1表
USE db;
DROP TABLE IF EXISTS t_order_;
CREATE TABLE t_order_ (
order_id bigint() NOT NULL,
user_id bigint() NOT NULL,
PRIMARY KEY (order_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf COLLATE=utf8_bin;
DROP TABLE IF EXISTS t_order_;
CREATE TABLE t_order_ (
order_id bigint() NOT NULL,
user_id bigint() NOT NULL,
PRIMARY KEY (order_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf COLLATE=utf8_bin;
-- 在db数据库上分别创建t_order_0、t_order_1表
USE db;
DROP TABLE IF EXISTS t_order_;
CREATE TABLE t_order_ (
order_id bigint() NOT NULL,
user_id bigint() NOT NULL,
PRIMARY KEY (order_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf COLLATE=utf8_bin;
DROP TABLE IF EXISTS t_order_;
CREATE TABLE t_order_ (
order_id bigint() NOT NULL,
user_id bigint() NOT NULL,
PRIMARY KEY (order_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf COLLATE=utf8_bin;
2. 引入依赖
<?xml version=".0" encoding="UTF-8"?>
< project xmlns="#34; xmlns:xsi="#34;
xsi:schemaLocation=" #;>
<modelVersion>.0.0</modelVersion>
<groupId>com.company</groupId>
<artifactId>sharding-jdbc</artifactId>
<version>.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>sharding-jdbc</name>
<description>Demo project for Spring Boot</description>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>.0.3.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<properties>
<project.build.sourceEncoding>UTF-</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-</project.reporting.outputEncoding>
<java.version>.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>.1.41</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>.1.10</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>com.dangdang</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>.5.4</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
注意mysql-connector-java的版本不要太高了
3. application.yml
spring:
jpa:
database: mysql
show-sql: true
hibernate:
ddl-auto: none
注意:hibernate.ddl-auto=none 是因为分表就会有多个表,例如torder0、torder1等,而ORM只能映射成一个,所以关闭自动的ddl语句。
4. domain
@Entity
@Table(name = "t_order")
@Data
public class Order {
@Id
private Long orderId;
private Long userId;
}
注意:orderId上使用@Id注解并没有使用@GeneratedValue(strategy = GenerationType.AUTO)的主键生成策略,原因是分表必须要保证所有表的主键id不重复,如果使用mysql的自动生成,那么id就会重复,这里的id一般要使用分布式主键id来通过代码来生成。
5. Repository
import com.company.shardingjdbc.domain.Order;
import org.springframework.data.repository.CrudRepository;
public interface OrderRepository extends CrudRepository<Order, Long> {
}
6. Controller
import com.company.shardingjdbc.domain.Order;
import com.company.shardingjdbc.repository.OrderRepository;
import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/order")
public class OrderController {
@Autowired
private OrderRepository orderRepository;
@Autowired
private KeyGenerator keyGenerator;
@RequestMapping("/create")
public Object add() {
for (int i =; i < 10; i++) {
Order order = new Order();
order.setUserId((long) i);
order.setOrderId((long) i);
orderRepository.save(order);
}
for (int i =; i < 20; i++) {
Order order = new Order();
order.setUserId((long) i +);
order.setOrderId((long) i);
orderRepository.save(order);
}
// for (int i =; i < 30; i++) {
// Order order = new Order();
// order.setOrderId(keyGenerator.generateKey().longValue());
// order.setUserId(keyGenerator.generateKey().longValue());
// orderRepository.save(order);
// }
return "success";
}
@RequestMapping("query")
private Object queryAll() {
return orderRepository.findAll();
}
}
7. Configuration
package com.company.shardingjdbc.configuration;
import com.alibaba.druid.pool.DruidDataSource;
import com.company.shardingjdbc.common.ModuleDatabaseShardingAlgorithm;
import com.company.shardingjdbc.common.ModuleTableShardingAlgorithm;
import com.dangdang.ddframe.rdb.sharding.api.ShardingDataSourceFactory;
import com.dangdang.ddframe.rdb.sharding.api.rule.DataSourceRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.ShardingRule;
import com.dangdang.ddframe.rdb.sharding.api.rule.TableRule;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.DatabaseShardingStrategy;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.TableShardingStrategy;
import com.dangdang.ddframe.rdb.sharding.keygen.DefaultKeyGenerator;
import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
import com.mysql.jdbc.Driver;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import javax.sql.DataSource;
import java.sql.SQLException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
@Configuration
public class DataSourceConfiguration {
@Bean
public DataSource getDataSource() throws SQLException {
return buildDataSource();
}
private DataSource buildDataSource() throws SQLException {
// 设置分库映射
Map<String, DataSource> dataSourceMap = new HashMap<>();
// 添加两个数据库db,db1到map里
dataSourceMap.put("db", createDataSource("db0"));
dataSourceMap.put("db", createDataSource("db1"));
// 设置默认db为db,也就是为那些没有配置分库分表策略的指定的默认库
// 如果只有一个库,也就是不需要分库的话,map里只放一个映射就行了,只有一个库时不需要指定默认库,但个及以上时必须指定默认库,否则那些没有配置策略的表将无法操作数据
DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap, "db");
// 设置分表映射,将t_order_和t_order_1两个实际的表映射到t_order逻辑表
//和1两个表是真实的表,t_order是个虚拟不存在的表,只是供使用。如查询所有数据就是 SELECT * from t_order就能查完0和1表的
TableRule orderTableRule = TableRule.builder("t_order")
.actualTables(Arrays.asList("t_order_", "t_order_1"))
.dataSourceRule(dataSourceRule)
.build();
// 具体分库分表策略,按什么规则来分
ShardingRule shardingRule = ShardingRule.builder()
.dataSourceRule(dataSourceRule)
.tableRules(Arrays.asList(orderTableRule))
.databaseShardingStrategy(new DatabaseShardingStrategy("user_id", new ModuleDatabaseShardingAlgorithm()))
.tableShardingStrategy(new TableShardingStrategy("order_id", new ModuleTableShardingAlgorithm())).build();
DataSource dataSource = ShardingDataSourceFactory.createDataSource(shardingRule);
return dataSource;
}
private static DataSource createDataSource(final String dataSourceName) {
// 使用druid连接数据库
DruidDataSource result = new DruidDataSource();
result.setDriverClassName(Driver.class.getName());
result.setUrl(String.format("jdbc:mysql://localhost:/%s", dataSourceName));
result.setUsername("root");
result.setPassword("root");
return result;
}
@Bean
public KeyGenerator keyGenerator() {
return new DefaultKeyGenerator();
}
}
ModuleDatabaseShardingAlgorithm
package com.company.shardingjdbc.common;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
import com.google.common.collect.Range;
import java.util.Collection;
import java.util.LinkedHashSet;
/**
* 单键数据库分片算法.
*
* 支持单键和多键策略
* <ul>
* <li>单键 SingleKeyDatabaseShardingAlgorithm</li>
* <li>多键 MultipleKeysDatabaseShardingAlgorithm</li>
* </ul>
*
* 支持的分片策略
* <ul>
* <li> = doEqualSharding 例如 where order_id = </li>
* <li> IN doInSharding 例如 where order_id in (, 2)</li>
* <li> BETWEEN doBetweenSharding 例如 where order_id between and 2 </li>
* </ul>
*
* @author mengday
*/
public class ModuleDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Long> {
/**
* 分片策略 相等=
* @param availableTargetNames 可用的目标名字(这里指数据名db、db1)
* @param shardingValue 分片值[logicTableName="t_order" 逻辑表名, columnName="user_id" 分片的列名, value="" 分片的列名对应的值(user_id=20)]
* @return
*/
@Override
public String doEqualSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) {
for (String each : availableTargetNames) {
if (each.endsWith(shardingValue.getValue() % + "")) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> availableTargetNames, ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : availableTargetNames) {
if (tableName.endsWith(value % + "")) {
result.add(tableName);
}
}
}
return result;
}
@Override
public Collection<String> doBetweenSharding(Collection<String> availableTargetNames,
ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(availableTargetNames.size());
Range<Long> range = shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : availableTargetNames) {
if (each.endsWith(i % + "")) {
result.add(each);
}
}
}
return result;
}
}
package com.company.shardingjdbc.common;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;
import java.util.Collection;
import java.util.LinkedHashSet;
public final class ModuleTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> {
/**
* doEqualSharding =
* @param tableNames 实际物理表名
* @param shardingValue [logicTableName="t_order", columnName="order_id", value=]
*
* select * from t_order from t_order where order_id =
* └── SELECT * FROM t_order_ WHERE order_id = 11
* select * from t_order from t_order where order_id =
* └── SELECT * FROM t_order_ WHERE order_id = 44
*/
* select * from t_order from t_order where order_id =
* └── SELECT * FROM t_order_ WHERE order_id = 11
* select * from t_order from t_order where order_id =
* └── SELECT * FROM t_order_ WHERE order_id = 44
*/
public String doEqualSharding(final Collection<String> tableNames, final ShardingValue<Long> shardingValue) {
for (String each : tableNames) {
if (each.endsWith(shardingValue.getValue() % + "")) {
return each;
}
}
throw new IllegalArgumentException();
}
/**
* select * from t_order from t_order where order_id in (,44)
* ├── SELECT * FROM t_order_ WHERE order_id IN (11,44)
* └── SELECT * FROM t_order_ WHERE order_id IN (11,44)
* select * from t_order from t_order where order_id in (,13,15)
* └── SELECT * FROM t_order_ WHERE order_id IN (11,13,15)
* select * from t_order from t_order where order_id in (,24,26)
* └──SELECT * FROM t_order_ WHERE order_id IN (22,24,26)
*/
public Collection<String> doInSharding(final Collection<String> tableNames, final ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : tableNames) {
if (tableName.endsWith(value % + "")) {
result.add(tableName);
}
}
}
return result;
}
/**
* select * from t_order from t_order where order_id between and 20
* ├── SELECT * FROM t_order_ WHERE order_id BETWEEN 10 AND 20
* └── SELECT * FROM t_order_ WHERE order_id BETWEEN 10 AND 20
*/
public Collection<String> doBetweenSharding(final Collection<String> tableNames, final ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
Range<Long> range = shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : tableNames) {
if (each.endsWith(i % + "")) {
result.add(each);
}
}
}
return result;
}
}
8. localhost:8080/order/create
db0 ├── torder0 userid为偶数 orderid为偶数 ├── torder1 userid为偶数 orderid为奇数 db1 ├── torder0 userid为奇数 orderid为偶数 ├── torder1 userid为奇数 orderid为奇数
四:sharding-jdbc + mybatis + druid集成
此示例是在jap原有的集成上集成mybatis
1. 引入mybatis依赖
<dependency>
<groupId>org.mybatis.spring.boot</groupId>
<artifactId>mybatis-spring-boot-starter</artifactId>
<version>.3.2</version>
</dependency>
2. 在Application上添加注解@MapperScan
@MapperScan("com.company.shardingjdbc.mapper")
@SpringBootApplication
public class ShardingJdbcApplication {
public static void main(String[] args) {
SpringApplication.run(ShardingJdbcApplication.class, args);
}
}
3. application.yml
# Mybatis 配置
mybatis:
typeAliasesPackage: com.company.shardingjdbc.domain
mapperLocations: classpath:mapper/*.xml
configuration.map-underscore-to-camel-case: true
# 打印mybatis中的sql语句和结果集
logging:
level.com.company.shardingjdbc.mapper: TRACE
4. OrderMapper
import org.apache.ibatis.annotations.Param;
import java.util.List;
public interface OrderMapper {
void insert(Order order);
List<Order> queryById(@Param("orderIdList") List<Long> orderIdList);
}
5. OrderMapper.xml
<?xml version=".0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper.0//EN" "#34; >
<mapper namespace="com.company.shardingjdbc.mapper.OrderMapper" >
<select id="queryById" parameterType="Long" resultType="Order">
SELECT * FROM t_order WHERE order_id IN
<foreach collection="orderIdList" item="orderId" open="(" separator="," close=")">
#{orderId}
</foreach>
</select>
<insert id="insert" parameterType="Order">
INSERT INTO t_order (order_id, user_id) VALUES (#{orderId}, #{userId})
</insert>
</mapper>
6. OrderController
import com.dangdang.ddframe.rdb.sharding.keygen.KeyGenerator;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
@RestController
@RequestMapping("/order")
public class OrderController {
@Autowired
private OrderMapper orderMapper;
@RequestMapping("/insert")
public Object insert() {
for (int i =; i < 30; i++) {
Order order = new Order();
order.setUserId((long) i);
order.setOrderId((long) i);
orderMapper.insert(order);
}
for (int i =; i < 40; i++) {
Order order = new Order();
order.setUserId((long) i +);
order.setOrderId((long) i);
orderMapper.insert(order);
}
return "success";
}
@RequestMapping("queryById")
public List<Order> queryById(String orderIds) {
List<String> strings = Arrays.asList(orderIds.split(","));
List<Long> orderIdList = strings.stream().map(item -> Long.parseLong(item)).collect(Collectors.toList());
return orderMapper.queryById(orderIdList);
}
}
7. 插入数据
localhost:8080/order/insert
- ModuleDatabaseShardingAlgorithm: 先根据分片键user_id及值来确定要操作的数据库是db0还是db1
- ModuleTableShardingAlgorithm: 再根据分片键orderid及值来确定要操作的数据库对应的表是torder0还是torder_1
- 当数据库名和表名都确定了就可以操作数据库了
localhost:8080/order/queryById?orderIds=20,31,30,21