目录
- 一。Redis实现分布式锁原理
- 为什么需要分布式锁
- 分布式锁如何实现
- 如何避免死锁
- 锁被别人给释放了
- 如何确定锁的过期时间
- Redis的部署方式对锁的影响
- 二。代码实现Redis分布式锁
- 1.SpringBoot整合redis用到最多的当然属于我们的老朋友RedisTemplate,pom依赖如下:
- 2.Redis配置类:
- 3.Service层面
- 4.业务调用实现分布式锁示例:
一。Redis实现分布式锁原理
为什么需要分布式锁
在聊分布式锁之前,有必要先解释一下,为什么需要分布式锁。
与分布式锁相对就的是单机锁,我们在写多线程程序时,避免同时操作一个共享变量产生数据问题,通常会使用一把锁来互斥以保证共享变量的正确性,其使用范围是在同一个进程中。如果换做是多个进程,需要同时操作一个共享资源,如何互斥呢?现在的业务应用通常是微服务架构,这也意味着一个应用会部署多个进程,多个进程如果需要修改MySQL中的同一行记录,为了避免操作乱序导致脏数据,此时就需要引入分布式锁了。
想要实现分布式锁,必须借助一个外部系统,所有进程都去这个系统上申请加锁。而这个外部系统,必须要实现互斥能力,即两个请求同时进来,只会给一个进程加锁成功,另一个失败。这个外部系统可以是数据库,也可以是Redis或Zookeeper,但为了追求性能,我们通常会选择使用Redis或Zookeeper来做。
Redis本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁。而且 Redis 的读写性能高,可以应对高并发的锁操作场景。本文主要探讨如何基于Redis实现分布式锁以及实现过程中可能面临的问题。
分布式锁如何实现
作为分布式锁实现过程中的共享存储系统,Redis可以使用键值对来保存锁变量,在接收和处理不同客户端发送的加锁和释放锁的操作请求。那么,键值对的键和值具体是怎么定的呢?我们要赋予锁变量一个变量名,把这个变量名作为键值对的键,而锁变量的值,则是键值对的值,这样一来,Redis就能保存锁变量了,客户端也就可以通过Redis的命令操作来实现锁操作。
想要实现分布式锁,必须要求Redis有互斥的能力。可以使用SETNX命令,其含义是SET IF NOT EXIST,即如果key不存在,才会设置它的值,否则什么也不做。两个客户端进程可以执行这个命令,达到互斥,就可以实现一个分布式锁。
以下展示了Redis使用key/value对保存锁变量,以及两个客户端同时请求加锁的操作过程。
加锁操作完成后,加锁成功的客户端,就可以去操作共享资源,例如,修改MySQL的某一行数据。操作完成后,还要及时释放锁,给后来者让出操作共享资源的机会。如何释放锁呢?直接使用DEL命令删除这个key即可。这个逻辑非常简单,整体的流程写成伪代码就是下面这样。
// 加锁
SETNX lock_key
// 业务逻辑
DO THINGS
// 释放锁
DEL lock_key
但是,以上实现存在一个很大的问题,当客户端1拿到锁后,如果发生下面的场景,就会造成死锁。
程序处理业务逻辑异常,没及时释放锁进程挂了,没机会释放锁
以上情况会导致已经获得锁的客户端一直占用锁,其他客户端永远无法获取到锁。
如何避免死锁
为了解决以上死锁问题,最容易想到的方案是在申请锁时,在Redis中实现时,给锁设置一个过期时间,假设操作共享资源的时间不会超过10s,那么加锁时,给这个key设置10s过期即可。
但以上操作还是有问题,加锁、设置过期时间是2条命令,有可能只执行了第一条,第二条却执行失败,例如:
1.SETNX执行成功,执行EXPIRE时由于网络问题,执行失败
2.SETNX执行成功,Redis异常宕机,EXPIRE没有机会执行
3.SETNX执行成功,客户端异常崩溃,EXPIRE没有机会执行
总之这两条命令如果不能保证是原子操作,就有潜在的风险导致过期时间设置失败,依旧有可能发生死锁问题。幸好在Redis 2.6.12之后,Redis扩展了SET命令的参数,可以在SET的同时指定EXPIRE时间,这条操作是原子的,例如以下命令是设置锁的过期时间为10秒。
SET lock_key 1 EX 10 NX
至此,解决了死锁问题,但还是有其他问题。想像下面这个这样一种场景:
- 客户端1加锁成功,开始操作共享资源
- 客户端1操作共享资源耗时太久,超过了锁的过期时间,锁失效(锁被自动释放)
- 客户端2加锁成功,开始操作共享资源
- 客户端1操作共享资源完成,在finally块中手动释放锁,但此时它释放的是客户端2的锁。
这里存在两个严重的问题:
- 锁过期
- 释放了别人的锁
第1个问题是评估操作共享资源的时间不准确导致的,如果只是一味增大过期时间,只能缓解问题降低出现问题的概率,依旧无法彻底解决问题。原因在于客户端在拿到锁之后,在操作共享资源时,遇到的场景是很复杂的,既然是预估的时间,也只能是大致的计算,不可能覆盖所有导致耗时变长的场景。
第2个问题是释放了别人的锁,原因在于释放锁的操作是无脑操作,并没有检查这把锁的归属,这样解锁不严谨。如何解决呢?
锁被别人给释放了
解决办法是,客户端在加锁时,设置一个只有自己知道的唯一标识进去,例如可以是自己的线程ID,如果是redis实现,就是SET key unique_value EX 10 NX。之后在释放锁时,要先判断这把锁是否归自己持有,只有是自己的才能释放它。
//释放锁 比较unique_value是否相等,避免误释放
if redis.get("key") == unique_value then
return redis.del("key")
这里释放锁使用的是GET + DEL两条命令,这时又会遇到原子性问题了。
- 客户端1执行GET,判断锁是自己的
- 客户端2执行了SET命令,强制获取到锁(虽然发生概念很低,但要严谨考虑锁的安全性)
- 客户端1执行DEL,却释放了客户端2的锁
由此可见,以上GET + DEL两个命令还是必须原子的执行才行。怎样原子执行两条命令呢?答案是Lua脚本,可以把以上逻辑写成Lua脚本,让Redis执行。因为Redis处理每个请求是单线程执行的,在执行一个Lua脚本时其它请求必须等待,直到这个Lua脚本处理完成,这样一来GET+DEL之间就不会有其他命令执行了。
以下是使用Lua脚本(unlock.script)实现的释放锁操作的伪代码,其中,KEYS[1]表示lock_key,ARGV[1]是当前客户端的唯一标识,这两个值都是我们在执行 Lua脚本时作为参数传入的。
//Lua脚本语言,释放锁 比较unique_value是否相等,避免误释放
if redis.call("get",KEYS[]) == ARGV[1] then
return redis.call("del",KEYS[])
else
return
end
最后我们执行以下命令,即可
redis-cli --eval unlock.script lock_key , unique_value
这样一路优先下来,整个加锁、解锁流程就更严谨了,先小结一下,基于Redis实现的分布式锁,一个严谨的流程如下:
- 加锁时要设置过期时间SET lock_key unique_value EX expire_time NX
- 操作共享资源
- 释放锁:Lua脚本,先GET判断锁是否归属自己,再DEL释放锁
有了这个严谨的锁模型,我们还需要重新思考之前的那个问题,锁的过期时间不好评估怎么办。
如何确定锁的过期时间
前面提到过,过期时间如果评估得不好,这个锁就会有提前过期的风险,一种妥协的解决方案是,尽量冗余过期时间,降低锁提前过期的概率,但这个方案并不能完美解决问题。是否可以设置这样的方案,加锁时,先设置一个预估的过期时间,然后开启一个守护线程,定时去检测这个锁的失效时间,如果锁快要过期了,操作共享资源还未完成,那么就自动对锁进行续期,重新设置过期时间。
这是一种比较好的方案,已经有一个库把这些工作都封装好了,它就是Redisson。Redisson是一个Java语言实现的Redis SDK客户端,在使用分布式锁时,它就采用了自动续期的方案来避免锁过期,这个守护线程我们一般叫它看门狗线程。这个SDK提供的API非常友好,它可以像操作本地锁一样操作分布式锁。客户端一旦加锁成功,就会启动一个watch dog看门狗线程,它是一个后台线程,会每隔一段时间(这段时间的长度与设置的锁的过期时间有关)检查一下,如果检查时客户端还持有锁key(也就是说还在操作共享资源),那么就会延长锁key的生存时间。
那如果客户端在加锁成功后就宕机了呢?宕机了那么看门狗任务就不存在了,也就无法为锁续期了,锁到期自动失效。
Redis的部署方式对锁的影响
上面讨论的情况,都是锁在单个Redis 实例中可能产生的问题,并没有涉及到Redis的部署架构细节。
Redis发展到现在,几种常见的部署架构有:
- 单机模式;
- 主从模式;
- 哨兵(sentinel)模式;
- 集群模式;
我们使用Redis时,一般会采用主从集群+哨兵的模式部署,哨兵的作用就是监测redis节点的运行状态。普通的主从模式,当master崩溃时,需要手动切换让slave成为master,使用主从+哨兵结合的好处在于,当master异常宕机时,哨兵可以实现故障自动切换,把slave提升为新的master,继续提供服务,以此保证可用性。那么当主从发生切换时,分布式锁依旧安全吗?
想像这样的场景:
- 客户端1在master上执行SET命令,加锁成功
- 此时,master异常宕机,SET命令还未同步到slave上(主从复制是异步的)
- 哨兵将slave提升为新的master,但这个锁在新的master上丢失了,导致客户端2来加锁成功了,两个客户端共同操作共享资源
可见,当引入Redis副本后,分布式锁还是可能受到影响。即使Redis通过sentinel保证高可用,如果这个master节点由于某些原因发生了主从切换,那么就会出现锁丢失的情况。
集群模式+Redlock实现高可靠的分布式锁
为了避免Redis实例故障而导致的锁无法工作的问题,Redis的开发者 Antirez提出了分布式锁算法Redlock。Redlock算法的基本思路,是让客户端和多个独立的Redis实例依次请求加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁了,否则加锁失败。这样一来,即使有单个Redis实例发生故障,因为锁变量在其它实例上也有保存,所以,客户端仍然可以正常地进行锁操作,锁变量并不会丢失。
来具体看下Redlock算法的执行步骤。Redlock算法的实现要求Redis采用集群部署模式,无哨兵节点,需要有N个独立的Redis实例(官方推荐至少5个实例)。接下来,我们可以分成3步来完成加锁操作。
第一步是,客户端获取当前时间。
第二步是,客户端按顺序依次向N个Redis实例执行加锁操作。
这里的加锁操作和在单实例上执行的加锁操作一样,使用SET命令,带上NX、EX/PX选项,以及带上客户端的唯一标识。当然,如果某个Redis实例发生故障了,为了保证在这种情况下,Redlock算法能够继续运行,我们需要给加锁操作设置一个超时时间。如果客户端在和一个Redis实例请求加锁时,一直到超时都没有成功,那么此时,客户端会和下一个Redis实例继续请求加锁。加锁操作的超时时间需要远远地小于锁的有效时间,一般也就是设置为几十毫秒。
第三步是,一旦客户端完成了和所有Redis实例的加锁操作,客户端就要计算整个加锁过程的总耗时。
客户端只有在满足两个条件时,才能认为是加锁成功,条件一是客户端从超过半数(大于等于 N/2+1)的Redis实例上成功获取到了锁;条件二是客户端获取锁的总耗时没有超过锁的有效时间。
为什么大多数实例加锁成功才能算成功呢?多个Redis实例一起来用,其实就组成了一个分布式系统。在分布式系统中总会出现异常节点,所以在谈论分布式系统时,需要考虑异常节点达到多少个,也依旧不影响整个系统的正确运行。这是一个分布式系统的容错问题,这个问题的结论是:如果只存在故障节点,只要大多数节点正常,那么整个系统依旧可以提供正确服务。
在满足了这两个条件后,我们需要重新计算这把锁的有效时间,计算的结果是锁的最初有效时间减去客户端为获取锁的总耗时。如果锁的有效时间已经来不及完成共享数据的操作了,我们可以释放锁,以免出现还没完成共享资源操作,锁就过期了的情况。
当然,如果客户端在和所有实例执行完加锁操作后,没能同时满足这两个条件,那么,客户端就要向所有Redis节点发起释放锁的操作。为什么释放锁,要操作所有的节点呢,不能只操作那些加锁成功的节点吗?因为在某一个Redis节点加锁时,可能因为网络原因导致加锁失败,例如一个客户端在一个Redis实例上加锁成功,但在读取响应结果时由于网络问题导致读取失败,那这把锁其实已经在Redis上加锁成功了。所以释放锁时,不管之前有没有加锁成功,需要释放所有节点上的锁以保证清理节点上的残留的锁。
在Redlock算法中,释放锁的操作和在单实例上释放锁的操作一样,只要执行释放锁的 Lua脚本就可以了。这样一来,只要N个Redis实例中的半数以上实例能正常工作,就能保证分布式锁的正常工作了。所以,在实际的业务应用中,如果你想要提升分布式锁的可靠性,就可以通过Redlock算法来实现。
二。代码实现Redis分布式锁
1.SpringBoot整合redis用到最多的当然属于我们的老朋友RedisTemplate,pom依赖如下:
<!-- springboot整合redis -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2.Redis配置类:
package com.example.redisdemo.config;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.JacksonJsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* @description: Redis配置类
* @author Keson
* @date:20 2022/11/14
* @Param
* @return
* @version.0
*/
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(LettuceConnectionFactory lettuceConnectionFactory) {
// 设置序列化
JacksonJsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<Object>(Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
jacksonJsonRedisSerializer.setObjectMapper(om);
// 配置redisTemplate
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
redisTemplate.setConnectionFactory(lettuceConnectionFactory);
RedisSerializer<?> stringSerializer = new StringRedisSerializer();
redisTemplate.setKeySerializer(stringSerializer);// key序列化
redisTemplate.setValueSerializer(jacksonJsonRedisSerializer);// value序列化
redisTemplate.setHashKeySerializer(stringSerializer);// Hash key序列化
redisTemplate.setHashValueSerializer(jacksonJsonRedisSerializer);// Hash value序列化
redisTemplate.afterPropertiesSet();
return redisTemplate;
}
}
3.Service层面
package com.example.redisdemo.service;
import com.example.redisdemo.entity.CustomerBalance;
import java.util.concurrent.Callable;
/**
* @author Keson
* @version.0
* @description: TODO
* @date/11/14 15:12
*/
public interface RedisService {
<T> T callWithLock(CustomerBalance customerBalance, Callable<T> callable) throws Exception;
}
package com.example.redisdemo.service.impl;
import com.example.redisdemo.entity.CustomerBalance;
import com.example.redisdemo.service.RedisService;
import lombok.extern.slfj.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.connection.RedisStringCommands;
import org.springframework.data.redis.connection.ReturnType;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.types.Expiration;
import org.springframework.stereotype.Service;
import java.nio.charset.StandardCharsets;
import java.util.UUID;
import java.util.concurrent.Callable;
import java.util.concurrent.TimeUnit;
/**
* @author Keson
* @version.0
* @description: TODO Redis实现分布式锁
* @date/11/14 15:13
*/
@Service
@Slfj
public class RedisServiceImpl implements RedisService {
//设置默认过期时间
private final static int DEFAULT_LOCK_EXPIRY_TIME =;
//自定义lock key前缀
private final static String LOCK_PREFIX = "LOCK:CUSTOMER_BALANCE";
@Autowired
private RedisTemplate redisTemplate;
@Override
public <T> T callWithLock(CustomerBalance customerBalance, Callable<T> callable) throws Exception{
//自定义lock key
String lockKey = getLockKey(customerBalance.getCustomerNumber(), customerBalance.getSubAccountNumber(), customerBalance.getCurrencyCode());
//将UUID当做value,确保唯一性
String lockReference = UUID.randomUUID().toString();
try {
if (!lock(lockKey, lockReference, DEFAULT_LOCK_EXPIRY_TIME, TimeUnit.SECONDS)) {
throw new Exception("lock加锁失败");
}
return callable.call();
} finally {
unlock(lockKey, lockReference);
}
}
//定义lock key
String getLockKey(String customerNumber, String subAccountNumber, String currencyCode) {
return String.format("%s:%s:%s:%s", LOCK_PREFIX, customerNumber, subAccountNumber, currencyCode);
}
//redis加锁
private boolean lock(String key, String value, long timeout, TimeUnit timeUnit) {
Boolean locked;
try {
//SET_IF_ABSENT --> NX: Only set the key if it does not already exist.
//SET_IF_PRESENT --> XX: Only set the key if it already exist.
locked = (Boolean) redisTemplate.execute((RedisCallback<Boolean>) connection ->
connection.set(key.getBytes(StandardCharsets.UTF_), value.getBytes(StandardCharsets.UTF_8),
Expiration.from(timeout, timeUnit), RedisStringCommands.SetOption.SET_IF_ABSENT));
} catch (Exception e) {
log.error("Lock failed for redis key: {}, value: {}", key, value);
locked = false;
}
return locked != null && locked;
}
//redis解锁
private boolean unlock(String key, String value) {
try {
//使用lua脚本保证删除的原子性,确保解锁
String script = "if redis.call('get', KEYS[]) == ARGV[1] " +
"then return redis.call('del', KEYS[]) " +
"else return end";
Boolean unlockState = (Boolean) redisTemplate.execute((RedisCallback<Boolean>) connection ->
connection.eval(script.getBytes(), ReturnType.BOOLEAN,,
key.getBytes(StandardCharsets.UTF_), value.getBytes(StandardCharsets.UTF_8)));
return unlockState == null || !unlockState;
} catch (Exception e) {
log.error("unLock failed for redis key: {}, value: {}", key, value);
return false;
}
}
}
4.业务调用实现分布式锁示例:
@Override
public int updateById(CustomerBalance customerBalance) throws Exception {
return redisService.callWithLock(customerBalance, ()-> customerBalanceMapper.updateById(customerBalance));
}