目录
- 1. JSON简介
- 2. JSON语法规则
- 3. JSON数据类型
- 4. JSON对象
- 5. JSON数组
- 6. JSON中常用的方法
- 6.1 json.dumps()
- 6.2 json.loads()
- 6.3 json.dump()
- 6.4 json.load()
- 6.5 更多实例
- 7. 参数详解
- 8. JSON反序列化为对象
- 9. 常见的错误
- 9.1 读取多行的JSON文件
- 9.2 控制台乱码
- 10. 总结
- 参考资料:
1. JSON简介
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它是JavaScript的子集,易于人阅读和编写。
JSON用来存储和交换文本信息,比xml更小/更快/更易解析,易于读写,占用带宽小,网络传输速度快的特性,适用于数据量大,不要求保留原有类型的情况。。
前端和后端进行数据交互,其实就是JS和Python进行数据交互!
2. JSON语法规则
- 名称必须用双引号(即:" ")来包括
- 值可以是双引号包括的字符串、数字、true、false、null、JavaScript数组,或子对象
- 数据在name/value中
- 数据见用逗号分隔
- 花括号保存对象
- 方括号保存数组
3. JSON数据类型
一并列举出Python与JSON数据类型的映射关系:
Python | JSON |
dict | object |
list, tuple | array |
str, unicode | string |
int, long, float | number |
True | true |
False | false |
None | null |
4. JSON对象
在花括号中书写,对象可以包含多个名称/值对。
例:
{"firstname": "jonh", "lastname": "Doe"}
5. JSON数组
Employees是包含三个对象的数组。
每个对象代表一条关于某个人名的记录,在方括号中书写,数组可以包含多个对象:
{ | |
"employees": [ | |
{ “firstName”:“John” , “lastName”:“Doe” }, | |
{ “firstName”:“Anna” , “lastName”:“Smith” }, | |
{ “firstName”:“Peter” , “lastName”:“Jones” } | |
] | |
} |
6. JSON中常用的方法
python在使用json这个模块前,首先要导入json库:import json.
方法 | 描述 |
json.dumps() | 将 Python 对象编码成 JSON 字符串 |
json.loads() | 将已编码的 JSON 字符串解码为 Python 对象 |
json.dump() | 将Python内置类型序列化为json对象后写入文件 |
json.load() | 读取文件中json形式的字符串元素转化为Python类型 |
注意:不带s的是序列化到文件或者从文件反序列化,带s的都是内存操作不涉及持久化。
6.1 json.dumps()
import json | |
data = {'name':'nanbei','age':} | |
# 将Python对象编码成json字符串 | |
print(json.dumps(data)) |
结果:
{"name": "nanbei", "age": 18}
注: 在这里我们可以看到,原先的单引号已经变成双引号了
6.2 json.loads()
import json | |
data = {'name':'nanbei','age':} | |
# 将Python对象编码成json字符串 | |
# print(json.dumps(data)) | |
# 将json字符串解码成Python对象 | |
a = json.dumps(data) | |
print(json.loads(a)) |
结果:
{'name': 'nanbei', 'age': 18}
在这里举个元组和列表的例子:
import json | |
data = (,2,3,4) | |
data_json = [,2,3,4] | |
#将Python对象编码成json字符串 | |
print(json.dumps(data)) | |
print(json.dumps(data_json)) | |
#将Python对象编码成json字符串 | |
a = json.dumps(data) | |
b = json.dumps(data_json) | |
#将json字符串编码成Python对象 | |
print(json.loads(a)) | |
print(json.loads(b)) |
结果:
[1, 2, 3, 4]
[1, 2, 3, 4]
[1, 2, 3, 4]
[1, 2, 3, 4]
可以看到,元组和列表解析出来的均是数组。
由以上输出可以看出编码过程中,Python中的list和tuple都被转化成json的数组,而解码后,json的数组最终被转化成Python的list的,无论是原来是list还是tuple。
6.3 json.dump()
将Python内置类型序列化为json对象后写入文件:
import json | |
data = { | |
'nanbei':'haha', | |
'a':[,2,3,4], | |
'b':(,2,3) | |
} | |
with open('json_test.txt','w+') as f: | |
json.dump(data,f) |
6.4 json.load()
读取文件中json形式的字符串元素转化为Python类型:
import json | |
data = { | |
'nanbei':'haha', | |
'a':[,2,3,4], | |
'b':(,2,3) | |
} | |
with open('json_test.txt','w+') as f: | |
json.dump(data,f) | |
with open('json_test.txt','r+') as f: | |
print(json.load(f)) |
结果:
{'a': [1, 2, 3, 4], 'b': [1, 2, 3], 'nanbei': 'haha'}
6.5 更多实例
json.dumps():将一个Python数据类型列表编码成json格式的字符串
#python的列表转换为json的数组 | |
import json | |
2,3]) | json.dumps([,|
'[, 2, 3]' | |
#python的字符串转换为json的字符串 | |
'abdcs') | json.dumps(|
'"abdcs"' | |
#python的元祖转换为json的数组 | |
2,3,'a')) | json.dumps((,|
'[, 2, 3, "a"]'#注意此时显示的是方括号 | |
#python的字典转换为json的对象 | |
'a',2:'b'}) | json.dumps({:|
'{"": "a", "2": "b"}'#注意此时1和2转换后是加了引号的,因为json的名称是必须要加引号的 | |
#python的整数转换为json的数字 | |
json.dumps() | |
'' | |
#python的浮点数转换为json的数字 | |
.1415) | json.dumps(|
'.1415' | |
#python的unicode字符串转换为json的字符串 | |
u'a') | json.dumps(|
'"a"' | |
#python的True转换为json的数组true | |
True) | json.dumps(|
'true' | |
#python的False转换为json的数组false | |
False) | json.dumps(|
'false' | |
#python的None转换为json的null | |
None) | json.dumps(|
'null' | |
#json本质上是一个字符串 | |
type(json.dumps('abc')) | |
<class 'str'> | |
dump和dumps:
import json | |
# dumps可以格式化所有的基本数据类型为字符串 | |
data = json.dumps([]) # 列表 | |
print(data, type(data1)) | |
data = json.dumps(2) # 数字 | |
print(data, type(data2)) | |
data = json.dumps('3') # 字符串 | |
print(data, type(data3)) | |
dict = {"name": "Tom", "age":} # 字典 | |
data = json.dumps(dict) | |
print(data, type(data4)) | |
with open("test.json", "w", encoding='utf-') as f: | |
# indent 超级好用,格式化保存字典,默认为None,小于为零个空格 | |
f.write(json.dumps(dict, indent=)) | |
json.dump(dict, f, indent=) # 传入文件描述符,和dumps一样的结果 |
得到的输出结果如下:格式化所有的数据类型为str类型:
[] <class 'str'> <class 'str'> | |
"" <class 'str'> | |
{"name": "Tom", "age":} <class 'str'> |
test.json中的内容:
{ | |
"name": "Tom", | |
"age": | |
} |
load和loads
import json | |
dict = '{"name": "Tom", "age":}' # 将字符串还原为dict | |
data = json.loads(dict) | |
print(data, type(data1)) | |
with open("test.json", "r", encoding='utf-') as f: | |
data = json.loads(f.read()) # load的传入参数为字符串类型 | |
print(data, type(data2)) | |
f.seek() # 将文件游标移动到文件开头位置 | |
data = json.load(f) | |
print(data, type(data3)) |
运行结果如下:
{'name': 'Tom', 'age': 23} <class 'dict'>
{'name': 'Tom', 'age': 23} <class 'dict'>
{'name': 'Tom', 'age': 23} <class 'dict'>
7. 参数详解
dumps(obj,skipkeys=False, ensure_ascii=True, check_circular=True, | |
allow_nan=True, cls=None, indent=None, separators=None, | |
default=None, sort_keys=False, **kw): |
函数作用: 将Python对象转变成JSON对象,便于序列化内存/文件中。
参数:
- skipkeys: 如果为True的话,则只能是字典对象,否则会TypeError错误, 默认False
- ensure_ascii: 确定是否为ASCII编码
- check_circular: 循环类型检查,如果为True的话
- allow_nan: 确定是否为允许的值
- indent: 会以美观的方式来打印,呈现,实现缩进
- separators: 对象分隔符,默认为,
- encoding: 编码方式,默认为utf-8
- sort_keys: 如果是字典对象,选择True的话,会按照键的ASCII码来排序
对于dump来说,只是多了一个fp参数:
简单说就是dump需要一个类似文件指针的参数(并不是真正的指针,可以称之为文件对象),与文件操作相结合,即先将Python文件对象转化为json字符串再保存在文件中。
dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, | |
allow_nan=True, cls=None, indent=None, separators=None, | |
default=None, sort_keys=False, **kw) | |
Serialize ``obj`` as a JSON formatted stream to ``fp`` (a``.write()``-supporting file-like object). |
类似Java中的class implements java.io.Serializable
Java提供了一种对象序列化的机制,该机制中,一个对象可以被表示为一个字节序列,该字节序列包括该对象的数据、有关对象的类型的信息和存储在对象中数据的类型。
8. JSON反序列化为对象
JSON反序列化为类对象或者类的实例,使用的是loads()方法中的object_hook参数:
代码示例:
import json | |
# 定义一个员工类 | |
class Employee(object): | |
def __init__(self,name,age,sex,tel): | |
self.name=name | |
self.age=age | |
self.sex=sex | |
self.tel=tel | |
# 实例化一个对象 | |
emp = Employee('kongsh',,'female',13123456789) | |
# 定义JSON转换Python实例的函数 | |
def jsonToClass(emp): | |
return Employee(emp['name'], emp['age'], emp['sex'], emp['tel']) | |
# 定义一个json字符串(字典) | |
json_str = '{"name": "kongsh", "age":, "sex": "female", "tel": 13123456789}' | |
emp = json.loads(json_str, object_hook=jsonToClass) | |
print (emp) | |
print(emp.name) |
结果展示:
9. 常见的错误
9.1 读取多行的JSON文件
假如要读取一个多行的JSON文件:
{"坂": ["坂"]} | |
{"构": ["构"]} | |
{"共": ["共"]} | |
{"钩": ["钩a9"]} | |
{"肮": ["肮ae"]} | |
{"孤": ["孤b64"]} |
如果直接使用:
with open(json_path, 'r') as f: | |
json_data = json.load(f) |
就会报错:抛出异常JSONDecodeError
json.decoder.JSONDecodeError: Extra data: line 2 column 1 (char 17)
表示数据错误,数据太多,第2行第一列
因为json只能读取一个文档对象,有两个解决办法
- 单行读取文件,一次读取一行文件。
- 保存数据源的时候,格式写为一个对象(dump)。
1. 单行读取文件:
with open(json_path, 'r') as f: | |
for line in f.readlines(): | |
json_data = json.loads(line) |
但是这种做法还有个问题,如果JSON文件中包含空行,还是会抛出JSONDecodeError异常。
json.decoder.JSONDecodeError: Expecting value: line 2 column 1 (char 1)
可以先处理空行,再进行文件读取操作:
for line in f.readlines(): | |
line = line.strip() # 使用strip函数去除空行 | |
if len(line) !=: | |
json_data = json.loads(line) |
2. 合并为一个对象:
将json文件处理成一个对象文件(序列化):
{"dict": [ | |
{"坂": ["坂"]}, | |
{"构": ["构"]}, | |
{"共": ["共"]}, | |
{"钩": ["钩a9"]}, | |
{"肮": ["肮ae"]}, | |
{"孤": ["孤b64"]} | |
]} |
然后再用:
with open(json_path, 'r') as f: | |
json_data = json.loads(f.read()) |
9.2 控制台乱码
# ensure_ascii=False 表示在控制台能够显示中文 | |
json_str = json.dumps(center_data_list, ensure_ascii=False) |
10. 总结
- json.dumps 将 Python 对象编码成 JSON 字符串
- json.loads 将已编码的 JSON 字符串解码为 Python 对象
- json.dump和json.load,需要传入文件描述符,加上文件操作。
- json内部的格式要注意,一个好的格式能够方便读取,可以用indent格式化。
个人总结:
- dump:存入的实例对象object(序列化)
- dumps:存入的JSON的字符串数据
- load:读取的实例对象object(反序列化)
- loads:读取的JSON的字符串数据,转化为Python字典对象