3.1 概述
可以发现,设计模式好像都是类似的。越看越感觉都着不多。其实都是类似面向接口编程的一种体现,只不过侧重点不一样或者说要体现的结果不一样。
3.2 使用场景
问题一:应对可能变化的对象实现
方案:间接创建
模式:工厂模式
问题二:为请求指定相应的操作(类似请假审批,不同时长对应不同职位的审批人)
方案:程序根据请求动态选择操作
模式: 责任链模式
3.3 具体说明
3.3.1 策略模式
- 策略模式说明
一个行为型模式,包含多个行为或职责的业务,通过策略模式简化
public class StrategyContext {
Strategy strategy;
public StrategyContext(Strategy strategy) {
this.strategy = strategy;
}
/**
*
*/ public int context(int a, int b) {
return strategy.operator(a,b);
}
}
策略模式的核心为StrategyContext上下文类,持有strategy对象,在context完成操作。
- 策略模式实践
如何使用策略模式解决大量使用 if else 或大量switch问题,策略模式+反射。
策略模式后好像使用都还是要用if else来决定调用哪个类,所以在引入策略模式后,在上下文类还要增加反射。
public class StrategyContext {
Strategy strategy;
public StrategyContext(String type) throws Exception {
Class clazz = Class.forName(type);
this.strategy = (Strategy) clazz.newInstance();
}
/**
*
*/ public int context(int a, int b) {
return strategy.operator(a,b);
}
当然这里的type可以用个枚举来解决。感觉代价非常大是不是没必要,不过代码的可读性还是增强了。
p.s. 在框架里策略模式中的Context一般不会直接出现,类似 spring 中直接在使用时就通过注解给设置了
3.3.2、装饰器模式
描述:原接口Shape不变,方法数量不变,在 方法实现中 增加修饰
场景:
场景一:一个类功能简单,满足不了我们的需求
场景二:给原方法增加日志功能,不改变原方法,新的实现类去实现此功能,带入的对象为接口对象
特点
- 原接口Shape不动,增加新的装饰类ShapeDecorator
- 原方法名不变,只是增加或修饰此方法体
- ColorShapeDecorator装饰类持有原对象,只是增加了修饰
public class ColorShapeDecorator extends ShapeDecorator {
public ColorShapeDecorator(Shape shape) {
super(shape);
}
@Override
public void draw() {
setColor ();
shape.draw();
}
private void setColor() {
//设置画图颜色
}
}
3.3.3 代理模式
设置一个中间代理来控制访问原目标对象,达到 增强 原对象的功能和 简化 访问方式的目的
场景:
场景一:不改变原方法,对原方法增加耗时的计算
场景二: rpc 远程调用,client端进行动态代理类似耗时计算一样,用户不用关心 client 的具体实现
分类
- 静态代理模式
- 动态代理模式
说明
- 静态代理模式
/**
* 与适配器模式的区别, 适配器 模式主要改变所考虑对象的接口,
* 而代理模式不能改变所代理类的接口。与装饰器模式的区别,
* 装饰器模式是为了增强功能, 代理模式 是为了加以控制
*/public class ProxySigntureService implements SigntureService {
private SigntureService signatureService;
/**
* Default constructor
*/ public ProxySigntureService(SigntureService signatureService) {
this.signatureService = signatureService;
}
public void sign() {
//控制对这个对象的访问
// 实现电子签名
}
}
- 动态代理模式
public class DynamicProxySignatureService implements InvocationHandler {
private Object obj;
public DynamicProxySignatureService(Object obj) {
this.obj = obj;
}
@Override
public Object invoke(Object proxyObj, Method method, Object[] objects)
throws Throwable {
return method.invoke(obj,objects);
}
}
参考文章:
3.3.4 适配器模式
描述: 原接口不变,增加 方法数量
场景:
场景一:原接口不变,在基础上增加新的方法。
场景二:接口的抽象方法很多,不想一一实现,使用适配器模式继承原实现类,再实现此接口
- 适配器模式适合需要 增加一个新接口的需求 ,在原接口与实现类基础上需要增加新的接口及方法。类似原接口只能method01方法,需求是增加method02方法,同时不再使用之前接口类。
新接口
public interface Targetable {
/**
*
*/ public void method();
/**
*
*/ public void method();
}
原接口实现类
public class Source {
public void method() {
// TODO implement here
}
}
适配器类,用于实现新接口。继承原实现类,同时实现新接口。
public class Adapter extends Source implements Targetable {
/**
*
*/ public void method() {
// TODO implement here
}
}
测试类
public class AdapterTest {
public static void main(String[] args) {
Targetable targetable = new Adapter();
targetable.method();
targetable.method();
}
}
3.3.5 单例模式
保证被创建一次,节省系统开销。
1)单例实现方式
- 饿汉式
- 懒汉式
- 懒汉式+ synchronized
- 双重校验
- 静态内部类
- 枚举(推荐方式)
2)实现代码
- 饿汉式
package com.hanko.designpattern.singleton;
/**
* 饿汉式 (饿怕了,担心没有吃,所以在使用之前就new出来)
*优点:实现简单,安全可靠
*缺点:在不需要时,就已实例化了
* @author hanko
* @version.0
* @date/9/14 18:50
*/public class HungrySingleton {
//特点一 静态私有变量 直接初始化
private static HungrySingleton instance = new HungrySingleton();
//特点二 构造函数私有
private HungrySingleton(){
}
public static HungrySingleton getInstance (){
return instance;
}
public void doSomething(){
//具体需要实现的功能
}
}
- 懒汉式
package com.hanko.designpattern.singleton;
/**
* 懒汉式(非常懒,所以在要使用时再去new)
*优点:简单
*缺点:存在线程安全问题
* @author hanko
* @version.0
* @date/9/14 18:50
*/public class SluggardSingleton {
//特点一 静态私有变量,先不初始化
private static SluggardSingleton instance;
//特点二 构造函数私有
private SluggardSingleton(){
}
//特点三 null判断,没有实例化就new
public static SluggardSingleton getInstance(){
if(instance == null){
instance = new SluggardSingleton();
}
return instance;
}
public void doSomething(){
//具体需要实现的功能
}
}
- 懒汉式+Synchronized
package com.hanko.designpattern.singleton;
/**
* 懒汉式(非常懒,所以在要使用时再去new)
*优点:简单
*缺点:存在线程安全问题
* @author hanko
* @version.0
* @date/9/14 18:50
*/public class SluggardSingleton {
//特点一 静态私有变量,先不初始化
private static SluggardSingleton instance;
//特点二 构造函数私有
private SluggardSingleton(){
}
//特点三 null判断,没有实例化就new
public static synchronized SluggardSingleton getInstance(){
if(instance == null){
instance = new SluggardSingleton();
}
return instance;
}
public void doSomething(){
//具体需要实现的功能
}
}
- 双重校验
package com.hanko.designpattern.singleton;
/**
* 双重校验
*对懒汉式单例模式做了线程安全处理增加锁机制
* volatile变量级
* synchronized 类级
* @author hanko
* @version.0
* @date/9/15 9:53
*/public class DoubleCheckSingleton {
//特点一 静态私有变量,增加 volatile 变量级锁
private static volatile DoubleCheckSingleton instance;
//特点二 构造函数私有
private DoubleCheckSingleton(){
}
//特点三 双重null判断 synchronized类级锁
public static DoubleCheckSingleton getInstance(){
if (instance == null){
synchronized(DoubleCheckSingleton.class){
if (instance == null){
instance = new DoubleCheckSingleton();
}
}
}
return instance;
}
}
- 静态内部类
package com.hanko.designpattern.singleton;
/**
* 内部静态类方式
*优点:静态内部类不会在InnerStaticSingleton类加载时加载,
* 而在调用getInstance()方法时才加载
*缺点:存在反射攻击或者反序列化攻击
* @author hanko
* @version.0
* @date/9/15 10:03
*/public class InnerStaticSingleton {
//特点一:构造函数私有
private InnerStaticSingleton(){
}
//特点二:静态内部类
private static class InnerSingleton{
private static InnerSingleton instance = new InnerSingleton();
}
public InnerSingleton getInstance(){
return InnerSingleton.instance;
}
public void doSomething(){
//do Something
}
}
- 枚举(推荐方式)
package com.hanko.designpattern.singleton;
/**
* 枚举实现单例简单安全
*
* @author hanko
* @version.0
* @date/9/14 19:01
*/public enum EnumSingleton {
INS;
private Singleton singleton;
EnumSingleton() {
singleton = new Singleton();
}
public void doSomething(){
singleton...
//具体需要实现的功能
}
}
EnumSingleton.INS.doSomething();
3.3.6 工厂模式
(简单工厂、抽象工厂): 解耦 代码。
简单工厂:用来生产同一等级结构中的任意产品,对于增加新的产品,无能为力。
工厂方法:用来生产同一等级结构中的固定产品,支持增加任意产品。
抽象工厂:用来生产不同产品族的全部产品,对于增加新的产品,无能为力;支持增加产品族。
参考文章:
3.3.7 观察者模式
定义了对象之间的一对多的依赖,这样一来,当一个对象改变时,它的所有的依赖者都会收到通知并自动更新。
3.3.8 外观模式
提供一个统一的接口,用来访问子系统中的一群接口,外观定义了一个高层的接口,让子系统更容易使用。
3.3.9 状态模式
允许对象在内部状态改变时改变它的行为,对象看起来好像修改了它的类。与策略模式类似,策略模式侧重点在一个事的不同实现方式抽离出来,而状态模式是一个事的不同状态抽离出来(开始、进行中、结束),每次状态完成自己的业务逻辑。
3.4 总结:
- 适配器模式(原功能不变,增加新功能)、装饰器模式(装饰原功能)、代理模式(控制原功能)
- 策略模式侧重点在一个事的不同实现方式抽离出来,而状态模式是一个事的不同状态抽离出来(开始、进行中、结束),每次状态完成自己的业务逻辑。