目录
- 1、三大组件
- 1.1 Channel & Buffer
- 1.2 Selector
- 2、ByteBuffer
- 2.1 ByteBuffer 正确使用姿势
- 2.2 ByteBuffer 结构
- 2.3 ByteBuffer 常见方法
- 2.4 Scattering Reads
- 2.5 Gathering Writes
- 2.6 黏包半包现象
1、三大组件
1.1 Channel & Buffer
channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层
常见的 Channel 有
- FileChannel
- DatagramChannel
- SocketChannel
- ServerSocketChannel
buffer 则用来缓冲读写数据,常见的 buffer 有
- ByteBuffer
- MappedByteBuffer
- DirectByteBuffer
- HeapByteBuffer
- ShortBuffer
- IntBuffer
- LongBuffer
- FloatBuffer
- DoubleBuffer
- CharBuffer
1.2 Selector
selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途
多线程版设计
多线程版缺点
- 内存占用高
- 线程上下文切换成本高
- 只适合连接数少的场景
线程池版设计
线程池版缺点
- 阻塞模式下,线程仅能处理一个 socket 连接
- 仅适合短连接场景
selector 版设计
selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)
调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理
2、ByteBuffer
有一普通文本文件 data.txt,内容为
1234567890abcd
使用 FileChannel 来读取文件内容
package org.example.demo; | |
import lombok.extern.slfj.Slf4j; | |
import java.io.FileInputStream; | |
import java.io.FileNotFoundException; | |
import java.io.IOException; | |
import java.io.RandomAccessFile; | |
import java.nio.ByteBuffer; | |
import java.nio.channels.FileChannel; | |
public class ChannelDemo { | |
public static void main(String[] args) { | |
try (FileChannel channel = new FileInputStream("data.txt").getChannel()) { | |
ByteBuffer buffer = ByteBuffer.allocate(); | |
do { | |
// 向 buffer 写入 | |
int len = channel.read(buffer); | |
log.debug("读到字节数:{}", len); | |
if (len == -) { | |
break; | |
} | |
// 切换 buffer 读模式 | |
buffer.flip(); | |
while(buffer.hasRemaining()) { | |
byte b = buffer.get(); | |
log.debug("实际字节{}", (char)b); | |
} | |
// 切换 buffer 写模式 | |
buffer.clear(); | |
} while (true); | |
} catch (IOException e) { | |
e.printStackTrace(); | |
} | |
} | |
} |
输出
15:03:39.467 [main] DEBUG org.example.demo1.ChannelDemo1 - 读到字节数:10
15:03:39.475 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节1
15:03:39.475 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节2
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节3
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节4
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节5
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节6
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节7
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节8
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节9
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节0
15:03:39.476 [main] DEBUG org.example.demo1.ChannelDemo1 - 读到字节数:4
15:03:39.477 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节a
15:03:39.477 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节b
15:03:39.477 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节c
15:03:39.477 [main] DEBUG org.example.demo1.ChannelDemo1 - 实际字节d
15:03:39.477 [main] DEBUG org.example.demo1.ChannelDemo1 - 读到字节数:-1
2.1 ByteBuffer 正确使用姿势
- 向 buffer 写入数据,例如调用 channel.read(buffer)
- 调用 flip() 切换至读模式
- 从 buffer 读取数据,例如调用 buffer.get()
- 调用 clear() 或 compact() 切换至写模式
- 重复 1~4 步骤
2.2 ByteBuffer 结构
ByteBuffer 有以下重要属性
- capacity
- position
- limit
一开始
写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态
flip 动作发生后,position 切换为读取位置,limit 切换为读取限制
读取 4 个字节后,状态
clear 动作发生后,状态
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
调试工具类
package org.example.utils; | |
import io.netty.util.internal.StringUtil; | |
import java.nio.ByteBuffer; | |
import static io.netty.util.internal.MathUtil.isOutOfBounds; | |
import static io.netty.util.internal.StringUtil.NEWLINE; | |
public class ByteBufferUtil { | |
private static final char[] BYTECHAR = new char[256]; | |
private static final char[] HEXDUMP_TABLE = new char[ * 4]; | |
private static final String[] HEXPADDING = new String[]; | |
private static final String[] HEXDUMP_ROWPREFIXES = new String[ >>> 4]; | |
private static final String[] BYTEHEX = new String[256]; | |
private static final String[] BYTEPADDING = new String[]; | |
static { | |
final char[] DIGITS = "abcdef".toCharArray(); | |
for (int i =; i < 256; i++) { | |
HEXDUMP_TABLE[i <<] = DIGITS[i >>> 4 & 0x0F]; | |
HEXDUMP_TABLE[(i <<) + 1] = DIGITS[i & 0x0F]; | |
} | |
int i; | |
// Generate the lookup table for hex dump paddings | |
for (i =; i < HEXPADDING.length; i++) { | |
int padding = HEXPADDING.length - i; | |
StringBuilder buf = new StringBuilder(padding *); | |
for (int j =; j < padding; j++) { | |
buf.append(" "); | |
} | |
HEXPADDING[i] = buf.toString(); | |
} | |
// Generate the lookup table for the start-offset header in each row (up toKiB). | |
for (i =; i < HEXDUMP_ROWPREFIXES.length; i++) { | |
StringBuilder buf = new StringBuilder(); | |
buf.append(NEWLINE); | |
buf.append(Long.toHexString(i << & 0xFFFFFFFFL | 0x100000000L)); | |
buf.setCharAt(buf.length() -, '|'); | |
buf.append('|'); | |
HEXDUMP_ROWPREFIXES[i] = buf.toString(); | |
} | |
// Generate the lookup table for byte-to-hex-dump conversion | |
for (i =; i < BYTE2HEX.length; i++) { | |
BYTEHEX[i] = ' ' + StringUtil.byteToHexStringPadded(i); | |
} | |
// Generate the lookup table for byte dump paddings | |
for (i =; i < BYTEPADDING.length; i++) { | |
int padding = BYTEPADDING.length - i; | |
StringBuilder buf = new StringBuilder(padding); | |
for (int j =; j < padding; j++) { | |
buf.append(' '); | |
} | |
BYTEPADDING[i] = buf.toString(); | |
} | |
// Generate the lookup table for byte-to-char conversion | |
for (i =; i < BYTE2CHAR.length; i++) { | |
if (i <=x1f || i >= 0x7f) { | |
BYTECHAR[i] = '.'; | |
} else { | |
BYTECHAR[i] = (char) i; | |
} | |
} | |
} | |
/** | |
* 打印所有内容 | |
* @param buffer | |
*/ | |
public static void debugAll(ByteBuffer buffer) { | |
int oldlimit = buffer.limit(); | |
buffer.limit(buffer.capacity()); | |
StringBuilder origin = new StringBuilder(); | |
appendPrettyHexDump(origin, buffer,, buffer.capacity()); | |
System.out.println("+--------+-------------------- all ------------------------+----------------+"); | |
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit); | |
System.out.println(origin); | |
buffer.limit(oldlimit); | |
} | |
/** | |
* 打印可读取内容 | |
* @param buffer | |
*/ | |
public static void debugRead(ByteBuffer buffer) { | |
StringBuilder builder = new StringBuilder(); | |
appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position()); | |
System.out.println("+--------+-------------------- read -----------------------+----------------+"); | |
System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit()); | |
System.out.println(builder); | |
} | |
private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) { | |
if (isOutOfBounds(offset, length, buf.capacity())) { | |
throw new IndexOutOfBoundsException( | |
"expected: " + " <= offset(" + offset + ") <= offset + length(" + length | |
+ ") <= " + "buf.capacity(" + buf.capacity() + ')'); | |
} | |
if (length ==) { | |
return; | |
} | |
dump.append( | |
" +-------------------------------------------------+" + | |
NEWLINE + " | 1 2 3 4 5 6 7 8 9 a b c d e f |" + | |
NEWLINE + "+--------+-------------------------------------------------+----------------+"); | |
final int startIndex = offset; | |
final int fullRows = length >>>; | |
final int remainder = length &xF; | |
// Dump the rows which have bytes. | |
for (int row =; row < fullRows; row++) { | |
int rowStartIndex = (row <<) + startIndex; | |
// Per-row prefix. | |
appendHexDumpRowPrefix(dump, row, rowStartIndex); | |
// Hex dump | |
int rowEndIndex = rowStartIndex +; | |
for (int j = rowStartIndex; j < rowEndIndex; j++) { | |
dump.append(BYTEHEX[getUnsignedByte(buf, j)]); | |
} | |
dump.append(" |"); | |
// ASCII dump | |
for (int j = rowStartIndex; j < rowEndIndex; j++) { | |
dump.append(BYTECHAR[getUnsignedByte(buf, j)]); | |
} | |
dump.append('|'); | |
} | |
// Dump the last row which has less than bytes. | |
if (remainder !=) { | |
int rowStartIndex = (fullRows <<) + startIndex; | |
appendHexDumpRowPrefix(dump, fullRows, rowStartIndex); | |
// Hex dump | |
int rowEndIndex = rowStartIndex + remainder; | |
for (int j = rowStartIndex; j < rowEndIndex; j++) { | |
dump.append(BYTEHEX[getUnsignedByte(buf, j)]); | |
} | |
dump.append(HEXPADDING[remainder]); | |
dump.append(" |"); | |
// Ascii dump | |
for (int j = rowStartIndex; j < rowEndIndex; j++) { | |
dump.append(BYTECHAR[getUnsignedByte(buf, j)]); | |
} | |
dump.append(BYTEPADDING[remainder]); | |
dump.append('|'); | |
} | |
dump.append(NEWLINE + | |
"+--------+-------------------------------------------------+----------------+"); | |
} | |
private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) { | |
if (row < HEXDUMP_ROWPREFIXES.length) { | |
dump.append(HEXDUMP_ROWPREFIXES[row]); | |
} else { | |
dump.append(NEWLINE); | |
dump.append(Long.toHexString(rowStartIndex &xFFFFFFFFL | 0x100000000L)); | |
dump.setCharAt(dump.length() -, '|'); | |
dump.append('|'); | |
} | |
} | |
public static short getUnsignedByte(ByteBuffer buffer, int index) { | |
return (short) (buffer.get(index) &xFF); | |
} | |
} |
测试如下:
package org.example.demo; | |
import java.nio.ByteBuffer; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferReadWrite { | |
public static void main(String[] args){ | |
ByteBuffer byteBuffer = ByteBuffer.allocate(); | |
byteBuffer.put((byte)x61);// a | |
debugAll(byteBuffer); | |
byteBuffer.put(new byte[]{x62,0x63,0x64}); | |
debugAll(byteBuffer); | |
byteBuffer.get(); | |
debugAll(byteBuffer); | |
//切换为读的状态 | |
byteBuffer.flip(); | |
byteBuffer.get(); | |
debugAll(byteBuffer); | |
byteBuffer.compact(); | |
debugAll(byteBuffer); | |
} | |
} |
运行结果如下:
18:12:55.063 [main] DEBUG io.netty.util.internal.logging.InternalLoggerFactory - Using SLF4J as the default logging framework
+--------+-------------------- all ------------------------+----------------+
position: [1], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 00 00 00 00 00 00 00 00 00 |a......... |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [4], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 00 00 00 |abcd...... |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 00 00 00 |abcd...... |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [1], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 00 00 00 |abcd...... |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [4], limit: [10]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 62 63 64 00 00 00 00 00 00 00 |bcd....... |
+--------+-------------------------------------------------+----------------+
Process finished with exit code 0
2.3 ByteBuffer 常见方法
分配空间
可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法
Bytebuffer buf = ByteBuffer.allocate();
例子:
package org.example.demo; | |
import java.nio.ByteBuffer; | |
public class TestByteBufferAllocate { | |
public static void main(String[] args){ | |
System.out.println(ByteBuffer.allocate().getClass()); | |
System.out.println(ByteBuffer.allocateDirect().getClass()); | |
} | |
} |
运行结果如下:
注意:
class java.nio.HeapByteBuffer -java 堆内存,读写效率低,受到GC的影响 class java.nio.DirectByteBuffer -直接内存,读写效率高(少一次拷贝),不会受GC影响,分配的效率低
向 buffer 写入数据
有两种办法
- 调用 channel 的 read 方法
- 调用 buffer 自己的 put 方法
int readBytes = channel.read(buf);
和
buf.put((byte));
从 buffer 读取数据
同样有两种办法
- 调用channel的write方法
- 调用buffer自己的get方法
int writeBytes = channel.write(buf);
和
byte b = buf.get();
get 方法会让 position 读指针向后走,如果想重复读取数据
可以调用 rewind 方法将 position 重新置为 0
package org.example.demo; | |
import java.nio.ByteBuffer; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferRead { | |
public static void main(String[] args){ | |
ByteBuffer buffer = ByteBuffer.allocate(); | |
buffer.put(new byte[]{'a','b','c','d'}); | |
buffer.flip(); | |
//rewind 从头开始读 | |
buffer.get(new byte[]); | |
debugAll(buffer); | |
System.out.println("===============================rewind================================"); | |
buffer.rewind(); | |
System.out.println((char)buffer.get()); | |
} | |
} |
调用结果:
+--------+-------------------- all ------------------------+----------------+
position: [4], limit: [4]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 62 63 64 00 00 00 00 00 00 |abcd...... |
+--------+-------------------------------------------------+----------------+
===============================rewind================================
a
或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
package org.example.demo; | |
import java.nio.ByteBuffer; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferRead { | |
public static void main(String[] args){ | |
ByteBuffer buffer = ByteBuffer.allocate(); | |
buffer.put(new byte[]{'a','b','c','d'}); | |
buffer.flip(); | |
//get(i) 不会改变读索引的位置 | |
System.out.println((char) buffer.get()); | |
debugAll(buffer); | |
} | |
} |
调用结果:
mark 和 reset
mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置
package org.example.demo; | |
import java.nio.ByteBuffer; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferRead { | |
public static void main(String[] args){ | |
ByteBuffer buffer = ByteBuffer.allocate(); | |
buffer.put(new byte[]{'a','b','c','d'}); | |
buffer.flip(); | |
//mark & reset | |
//mark 做一个标记,记录position位置,reset 是将position重置到mark的位置 | |
System.out.println((char) buffer.get()); | |
System.out.println((char) buffer.get()); | |
buffer.mark();//加标记,索引的位置 | |
System.out.println((char) buffer.get()); | |
System.out.println((char) buffer.get()); | |
buffer.reset();//将position重置到索引 | |
System.out.println((char) buffer.get()); | |
System.out.println((char) buffer.get()); | |
} | |
} |
测试结果:
a
b
c
d
c
d
注意
rewind 和 flip 都会清除 mark 位置
字符串与ByteBuffer互转
package org.example.demo; | |
import java.nio.ByteBuffer; | |
import java.nio.CharBuffer; | |
import java.nio.charset.Charset; | |
import java.nio.charset.StandardCharsets; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferString { | |
public static void main(String[] args){ | |
ByteBuffer buffer = ByteBuffer.allocate(); | |
buffer.put("hello".getBytes()); | |
debugAll(buffer); | |
buffer.flip(); | |
CharBuffer charBuffer = StandardCharsets.UTF_.decode(buffer); | |
String charBufferstr = charBuffer.toString(); | |
System.out.println(charBufferstr); | |
//.Charset | |
ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello"); | |
debugAll(buffer); | |
CharBuffer charBuffer = StandardCharsets.UTF_8.decode(buffer2); | |
String buffer = charBuffer1.toString(); | |
System.out.println(buffer); | |
//.wrap | |
ByteBuffer buffer = ByteBuffer.wrap("hello".getBytes()); | |
debugAll(buffer); | |
CharBuffer charBuffer = StandardCharsets.UTF_8.decode(buffer3); | |
String bufferstr = charBuffer3.toString(); | |
System.out.println(bufferstr); | |
} | |
} |
输出:
+--------+-------------------- all ------------------------+----------------+
position: [5], limit: [16]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........|
+--------+-------------------------------------------------+----------------+
hello
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f |hello |
+--------+-------------------------------------------------+----------------+
hello
Buffer的线程安全
Buffer是非线程安全的
2.4 Scattering Reads
分散读取,有一个文本文件parts.txt
onetwothree
使用如下方式读取,可以将数据填充至多个 buffer
package org.example.demo; | |
import java.io.IOException; | |
import java.io.RandomAccessFile; | |
import java.nio.ByteBuffer; | |
import java.nio.channels.FileChannel; | |
import static org.example.utils.ByteBufferUtil.debugAll; | |
public class TestByteBufferReads { | |
public static void main(String[] args){ | |
try (RandomAccessFile file = new RandomAccessFile("parts.txt", "r")) { | |
FileChannel channel = file.getChannel(); | |
ByteBuffer a = ByteBuffer.allocate(); | |
ByteBuffer b = ByteBuffer.allocate(); | |
ByteBuffer c = ByteBuffer.allocate(); | |
channel.read(new ByteBuffer[]{a, b, c}); | |
a.flip(); | |
b.flip(); | |
c.flip(); | |
debugAll(a); | |
debugAll(b); | |
debugAll(c); | |
} catch (IOException e) { | |
e.printStackTrace(); | |
} | |
} | |
} |
结果:
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [3]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 6f 6e 65 |one |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [3]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 77 6f |two |
+--------+-------------------------------------------------+----------------+
+--------+-------------------- all ------------------------+----------------+
position: [0], limit: [5]
+-------------------------------------------------+
| 0 1 2 3 4 5 6 7 8 9 a b c d e f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 68 72 65 65 |three |
+--------+-------------------------------------------------+----------------+
2.5 Gathering Writes
使用如下方式写入,可以将多个 buffer 的数据填充至 channel
package org.example.demo; | |
import java.io.IOException; | |
import java.io.RandomAccessFile; | |
import java.nio.ByteBuffer; | |
import java.nio.channels.FileChannel; | |
import java.nio.charset.StandardCharsets; | |
public class TestGatheringWrites { | |
public static void main(String[] args){ | |
ByteBuffer b = StandardCharsets.UTF_8.encode("hello"); | |
ByteBuffer b = StandardCharsets.UTF_8.encode("world"); | |
ByteBuffer b = StandardCharsets.UTF_8.encode("你好"); | |
try(FileChannel channel = new RandomAccessFile("words.txt","rw").getChannel()){ | |
channel.write(new ByteBuffer[]{b,b2,b3}); | |
}catch (IOException ex){ | |
} | |
} | |
} |
输出结果:
2.6 黏包半包现象
网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔 但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
- Hello,world\n
- I'm zhangsan\n
- How are you?\n
变成了下面的两个 byteBuffer (黏包,半包)
- Hello,world\nI'm zhangsan\nHo
- w are you?\n
现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据
public static void main(String[] args) { | |
ByteBuffer source = ByteBuffer.allocate(); | |
// 24 | |
source.put("Hello,world\nI'm zhangsan\nHo".getBytes()); | |
split(source); | |
source.put("w are you?\nhaha!\n".getBytes()); | |
split(source); | |
} | |
private static void split(ByteBuffer source) { | |
source.flip(); | |
int oldLimit = source.limit(); | |
for (int i =; i < oldLimit; i++) { | |
if (source.get(i) == '\n') { | |
System.out.println(i); | |
ByteBuffer target = ByteBuffer.allocate(i + - source.position()); | |
// ~ limit | |
source.limit(i +); | |
target.put(source); // 从source 读,向 target 写 | |
debugAll(target); | |
source.limit(oldLimit); | |
} | |
} | |
source.compact(); | |
} |