MySQL 数据库事务记录

数据库技术
416
0
0
2022-10-26

什么是数据库事务

数据库的 事务(Transaction)是一种机制、一个操作序列,包含了一组数据库操作命令,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务把所有的命令作为一个整体一起向系统提交或撤销操作请求,即这一组数据库命令要么都执行,要么都不执行,因此事务是一个不可分割的工作逻辑单元。如果任意一个操作失败,那么整组操作即为失败,会回到操作前状态或者是上一个节点。

因此,事务是保持 逻辑数据一致性可恢复性 的重要利器。而锁是实现事务的关键,可以保证事务的完整性和并发性

有哪些事务状态

事务在其整个生命周期中会经历不同的状态,这些状态也称为 事务状态

  • 活跃状态:事务的第一个状态,任何正在执行的事务都处于此状态,所做的 更改 存储在 主内存的缓冲区 中。
  • 部分提交状态:执行上次操作后,事务进入部分提交状态。之所以是部分提交,是因为所做的更改仍然在主内存的缓冲区中。
  • 失败状态:如果某个检查在活动状态下失败,在活动状态或部分提交状态发生一些错误,并且事务无法进一步执行,则事务进入失败状态。
  • 中止状态:如果任何事务已达到失败状态,则恢复管理器将数据库回滚到开始执行的原始状态。
  • 提交状态:如果所有操作成功执行,则来自 部分提交状态 的事务进入提交状态。无法从此状态回滚,它是一个新的 一致状态

事务的四大特性

事务具有 4 个特性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability),这 4 个特性通常简称为 ACID,关系型数据库 需要遵循 ACID 规则。

  • 原子性
  • 事务是最小的执行单位,不可分割的(原子的)。事务的原子性确保动作要么全部执行,要么全部不执行。
  • 银行转账 事务为例,如果该事务提交了,则这两个账户的数据将会更新;如果由于某种原因,事务在成功更新这两个账户之前终止了,则不会更新这两个账户的余额,并且会 撤销 对任何账户余额的修改,回到此操作前状态,即事务不能部分提交。
  • 一致性
  • 当事务完成时,数据必须处于一致状态,多个事务对同一个数据读取的结果是相同的。
  • 以银行转账事务事务为例。在事务开始之前,所有 账户余额的总额处于一致状态。在事务进行的过程中,一个账户余额减少了,而另一个账户余额尚未修改。因此,所有账户余额的总额处于不一致状态。但是当事务完成以后,账户余额的总额再次恢复到一致状态。
  • 隔离性

并发访问数据库 时,一个用户的事务不被其他事务所干扰,各个事务不干涉内部的数据。

​ 修改数据的事务可以在另一个使用相同数据的事务开始之前访问这些数据,或者在另一个使用相同数据的事 务结束之后访问这些数据。

  • 持久性
  • 一个事务被提交之后,它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

如何实现事务的 ACID 特性

事务的 ACID 特性是由关系数据库管理系统来实现的。

DBMS 采用 日志 来保证事务的 原子性一致性持久性。日志记录了事务对数据库所做的更新,如果某个事务在执行过程中发生错误,就可以根据日志,撤销事务对数据库已做的更新,使数据库退回到执行事务前的初始状态。

DBMS 采用 锁机制 来实现事务的隔离性。当多个事务同时更新数据库中相同的数据时,只允许 持有锁的事务 能更新该数据,其他事务必须等待,直到前一个事务释放了锁,其他事务才有机会更新该数据。

事务之间的相互影响

  • 脏读(Dirty Read)

​ 一个事务读取了另一个事务未提交的数据。

  • 不可重复读(Non-repeatable Read)

​ 就是在一个事务范围内,两次相同的查询会返回两个不同的数据,这是因为在此间隔内有其他事务对数据进行了修改。

  • 幻读(Phantom Read)

​ 幻读是指当事务 不是独立执行时 发生的一种现象,例如有一个事务对表中的数据进行了修改,这种修改涉及到表中的全部数据行,同时,第一个事务也修改这个表中的数据,这种修改是向表中 插入一行新数据。那么,第一个事务的用户发现表中还有没有修改的数据行,就好像发生了幻觉一样。

  • 丢失更新(Lost Update)

​ 两个事务同时读取同一条记录,事务 A 先修改记录,事务 B 也修改记录(B 是不知道 A 修改过),当 B 提交数据后, 其修改结果覆盖了 A 的修改结果,导致事务 A 更新丢失。

什么是事务的隔离级别

为了尽可能的避免上述事务之间的相互影响,从而达到事务的四大特性,SQL 标准定义了 4 种不同的事务隔离级别(TRANSACTION ISOLATION LEVEL),即 并发事务对同一资源的读取深度层次,由低到高依次是 读取未提交(READ-UNCOMMITTED)、读取已提交(READ-COMMITTED)、可重复读(REPEATABLE-READ)、可串行化(SERIALIZABLE),这 4 个级别与事务相互间影响问题对应如下:

隔离级别 脏读 不可重复读 幻读 丢失更新 读取未提交 是 是 是 是 读取已提交 否 是 是 是 可重复读 否 否 是 否 可串行化 否 否 否 否

  • 读取未提交

​ 最低的隔离级别,一个事务可以读到另一个事务未提交的结果,所有的并发事务问题都会发生。

  • 读取已提交

​ 只有在事务提交后,其更新结果才会被其他事务看见,可以解决 脏读问题,但是不可重复读或幻读仍有可能发生。Oracle 默认采用的是该隔离级别。

  • 可重复读

​ 在一个事务中,对于同一份数据的读取结果总是相同的,无论是否有其他事务对这份数据进行操作,以及这个事务是否提交,除非数据是被本身事务自己所修改。可以解决 脏读不可重复读。MySQL 默认采用可重复读隔离级别。

  • 可串行化

​ 事务 串行化执行,隔离级别最高,完全服从 ACID,牺牲了系统的并发性,也就是说,所有事务依次逐个执行,所以可以解决并发事务的所有问题。

在上一章中,提及事务之间的相互影响时,介绍了脏读、幻读等几种类型的数据错误,为更好避免发生这些错误,引入了对资源的锁定。锁定的存在使得一个事务对他自己的数据块进行操作时,另外一个事务不能插足这个数据块。

锁的分类

从数据库系统的角度,锁模式可分为以下 6 种类型:

  • 共享锁(S):又叫 他读锁。可以并发读取数据,但不能修改数据。也就是说当数据资源上存在共享锁时,所有的事务都不能对该数据进行修改,直到数据读取完成,共享锁释放。
  • 排它锁(X):又叫 独占锁写锁。对数据资源进行增删改操作时,不允许其它事务操作这块资源,直到排它锁被释放,从而防止同时对同一资源进行多重操作。
  • 更新锁(U):防止出现 死锁 的锁模式,两个事务对一个数据资源进行先读取再修改的情况下,使用共享锁和排它锁有时会出现死锁现象,而使用更新锁就可以避免死锁的出现。

​ 资源的更新锁一次只能分配给一个事务,如果需要对资源进行修改,更新锁会变成排它锁,否则变为共享 锁。

  • 意向锁:表示 SQL Server 需要在 层次结构中的某些底层资源上 获取共享锁或排它锁。例如,放置在 表级共享意向锁 表示事务打算在表中的页或行上放置共享锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它锁。
  • 意向锁可以提高性能,因为 SQL Server 仅在 表级 检查意向锁来确定事务是否可以安全地获取该表上的锁,而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。
  • 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。
  • 架构锁:在执行 依赖于表架构的操作 时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S),执行表的数据定义语言 (DDL)操作(例如添加列或除去表)时使用架构修改锁,当编译查询时,使用架构稳定性锁。
  • 大容量更新锁(BU):向表中大容量复制数据并指定了 TABLOCK 提示时使用。 大容量更新锁允许进程将数据并发地大容量复制到同一表,同时防止其它不进行大容量复制数据的进程访问该表。

事务隔离级别与锁的关系

  • 读取未提交 隔离级别下,读取数据不需要加 共享锁,这样就不会跟被修改的数据上的 排他锁 冲突;
  • 读取已提交 隔离级别下,读操作需要加 共享锁,但是在语句执行完以后释放共享锁;
  • 可重复读 隔离级别下,读操作需要加 共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁;
  • 可串行化 是限制性最强的隔离级别,因为该级别 锁定整个范围的键,并一直持有锁,直到事务完成。

什么是死锁?如何解决死锁?

死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。

常见的解决死锁的方法

  • 如果不同程序并发存取多个表,尽量约定 以相同的顺序访问表,可以大大降低死锁机会;
  • 在同一个事务中,尽可能做到 一次锁定所需要的所有资源,减少死锁产生概率;
  • 对于非常容易产生死锁的业务部分,可以尝试使用 升级锁定颗粒度,通过 表级锁 定来减少死锁产生的概率。

什么是乐观锁和悲观锁?如何实现?

DBMS 中的 并发控制 的任务是确保在 多个事务同时存取数据库中同一数据 时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。

悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。这对于长事务来讲,可能会严重影响系统的并发处理能力。实现方式:使用数据库中的锁机制。

乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。乐观锁适用于 读多写少 的应用场景,这样可以提高吞吐量。实现方式:一般会使用版本号机制或 CAS 算法实现。