Python Matplotlib数据可视化模块使用详解

Python
333
0
0
2023-06-21
标签   Python库
目录
  • 前言
  • 1 matplotlib 开发环境搭建
  • 2 绘制基础
  • 2.1 绘制直线
  • 2.2 绘制折线
  • 2.3 设置标签文字和线条粗细
  • 2.4 绘制一元二次方程的曲线 y=x^2
  • 2.5 绘制正弦曲线和余弦曲线
  • 3 绘制散点图
  • 4 绘制柱状图
  • 5 绘制饼状图
  • 6 绘制直方图
  • 7 绘制等高线图
  • 8 绘制三维图
  • 总结

本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍。

通过阅读本文,你可以:

  • 了解什么是 Matplotlib
  • 掌握如何用 Matplotlib 绘制各种图形(柱状图、饼状图、直方图等)
  • 掌握如何定制图形的颜色和样式
  • 掌握如何用 Matplotlib 绘制三维图

前言

为了将数据变成所有人都喜欢的图形,就需要使用本文要介绍的数据可视化库Matplotlib。当然,还有很多类似的程序库。但 Matplotlib 的功能更强大,而且可以很容易与Numpy、Pandas 等程序库结合在一起使用。

Matplotlib 是一个 Python 的 2D 绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。学习 Matplotlib,可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。 Matplotlib 是 Python的库,又是开发中常用的库。

1 matplotlib 开发环境搭建

如果使用的是 Anaconda Python 开 发 环 境 , 那 么Matplotlib 已 经 被 集 成 进Anaconda,并不需要单独安装。

如果使用的是标准的Python 开发环境,可以使用下面的命令安装 Matplotlib,语法格式如下:

pip install matplotlib

如果要了解 Matplotlib 更详细的情况,请访问官方网站。网址如下:https://matplotlib.org

安装完 Matplotlib 后,可以测试一下 Matplotlib 是否安装成功。进入 Python 的环境使用下面的语句导入 matplotlib.pyplot 模块。如果不出错,就说明 Matplotlib 已经安装成功了。

import matplotlib.pyplot as plt

2 绘制基础

在使用 Matplotlib 绘制图形时,其中有两个最为常用的场景。一个是画点,一个是画线。

pyplot 基本方法的使用如下。

2.1 绘制直线

在使用 Matplotlib 绘制线性图时,其中最简单的是绘制线图。在下面的实例代码中,使用 Matplotlib 绘制了一个简单的直线。具体实现过程如下:

  • 导入模块 pyplot,并给它指定别名 plt,以免反复输入 pyplot。在模块 pyplot中包含很多用于生产图表的函数。
  • 将绘制的直线坐标传递给函数 plot()。
  • 通过函数 plt.show()打开 Matplotlib 查看器,显示绘制的图形。

【示例 1】使用 matplotlib 根据两点绘制一条线

import matplotlib.pyplot as plt 
#将(,1)点和(2,4)连起来
plt.plot([,2],[1,4])
plt.show()

2.2 绘制折线

在上述的实例代码中,使用两个坐标绘制一条直线,接下来使用平方数序列 1、4、9、16 和 25 来绘制一个折线图。

【示例 2】使用 matplotlib 绘制折线图

import matplotlib.pyplot as plt 
x=[,2,3,4,5] 
squares=[,4,9,16,25] 
plt.plot(x,squares)
plt.show()

2.3 设置标签文字和线条粗细

在上面的实例直线结果不够完美,开发者可以绘制的线条样式进行灵活设置。例如:可以设置线条的粗细、设置文字等。

【示例 3】使用 matplotlib 绘制折线图并设置样

import matplotlib.pyplot as plt 
datas=[,2,3,4,5] 
squares=[,4,9,16,25]
plt.plot(datas,squares,linewidth=) 
#设置线条宽度#设置图标标题,并在坐标轴上添加标签plt.title('Numbers',fontsize=) 
plt.xlabel('datas',fontsize=) 
plt.ylabel('squares',fontsize=)
plt.show()

Matplotlib 默认情况不支持中文,可以使用以下简单的方法来解决:

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签

【示例 4】解决标签、标题中的中文问题

import matplotlib.pyplot as plt
datas=[,2,3,4,5]
squares=[,4,9,16,25] 
plt.plot(datas,squares,linewidth=) 
#设置线条宽度#设置中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei'] 
#设置图标标题,并在坐标轴上添加标签
plt.title('标题设置',fontsize=) 
plt.xlabel('x 轴',fontsize=)
plt.ylabel('y 轴',fontsize=)
plt.show()

2.4 绘制一元二次方程的曲线 y=x^2

Matplotlib 有很多函数用于绘制各种图形,其中 plot 函数用于曲线,需要将 200 个点的x 坐标和 Y 坐标分别以序列的形式传入 plot 函数,然后调用 show 函数显示绘制的图形。一元二次方程的曲线。

【示例 5】使用 matplotlib 绘制一元二次方程曲线

import matplotlib.pyplot as plt 
# 个点的 x 坐标
x=range(-,100)
#生成 y 点的坐标
y=[i** for i in x ] 
#绘制一元二次曲线
plt.plot(x,y)
#调用 savefig 将一元二次曲线保存为 result.jpg
#plt.savefig('result.jpg') #如果直接写成 plt.savefig('cos')  会生成 cos.png
plt.show()

2.5 绘制正弦曲线和余弦曲线

使用 plt 函数绘制任何曲线的第一步都是生成若干个坐标点(x,y),理论上坐标点是越多越好。本例取 0 到 10 之间 100 个等差数作为 x 的坐标,然后将这 100 个 x 坐标值一起传入 Numpy 的 sin 和 cos 函数,就会得到 100 个 y 坐标值,最后就可以使用 plot 函数绘制正弦曲线和余弦曲线。

【示例 6】使用 matplotlib 绘制正弦曲线和余弦曲线

import matplotlib.pyplot as plt
import numpy as np
#生成 x 的坐标(-10 的 100 个等差数列)
x=np.linspace(,10,100)
sin_y=np.sin(x) 
#绘制正弦曲线
plt.plot(x,sin_y) 
#绘制余弦曲线
cos_y=np.cos(x) 
plt.plot(x,cos_y) 
plt.show()

上面的示例可以看到,调用两次 plot 函数,会将 sin 和 cos 曲线绘制到同一个二维坐标系中,如果想绘制到两张画布中,可以调用 subplot()函数将画布分区。

import matplotlib.pyplot as plt
import numpy as np
#将画布分为区域,将图画到画布的指定区域
x=np.linspace(,10,100)
#将画布分为 行 2 列,将图画到画布的 1 区域
plt.subplot(,2,1)
plt.plot(x,np.sin(x))
plt.subplot(,2,3)
plt.plot(x,np.cos(x))
plt.show()

3 绘制散点图

使用 scatter 函数可以绘制随机点,该函数需要接收 x坐标和 y 坐标的序列。

【示例 8】使用 matplotlib 绘制 sin()函数的散点图

import matplotlib.pyplot as plt
import numpy as np
#画散点图
x=np.linspace(,10,100)
#生成 到 10 中 100 个等差数
plt.scatter(x,np.sin(x))
plt.show()

【示例 9】绘制 10 种大小 100 种颜色的散点图

import matplotlib.pyplot as plt
import numpy as np
#  画 种大小, 100 种颜色的散点图
np.random.seed() 
x=np.random.rand() 
y=np.random.rand() 
colors=np.random.rand() 
size=np.random.rand()*1000
plt.scatter(x,y,c=colors,s=size,alpha=.7)
plt.show()

作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。 可以使用如表 2-2 格式化字符。

颜色的缩写如下:

【示例 10】绘制不同种类不同颜色的线

import matplotlib.pyplot as plt 
import numpy as np
#不同种类不同颜色的线
x=np.linspace(,10,100) 
plt.plot(x,x+,'-g')	#实线  绿色
plt.plot(x,x+,'--c')	#虚线 浅蓝色
plt.plot(x,x+,'-.k')	#点划线 黑色
plt.plot(x,x+,'-r')	#实线  红色
plt.plot(x,x+,'o')	#点   默认是蓝色
plt.plot(x,x+,'x')	#叉叉  默认是蓝色
plt.plot(x,x+,'d')	#砖石  红色
plt.show()

【示例 11】添加图例

#不同种类不同颜色的线并添加图例
x=np.linspace(,10,100)
plt.plot(x,x+,'-g',label='-g')	#实线  绿色
plt.plot(x,x+,'--c',label='--c')	#虚线 浅蓝色
plt.plot(x,x+,'-.k',label='-.k')	#点划线 黑色
plt.plot(x,x+,'-r',label='-r')	#实线  红色
plt.plot(x,x+,'o',label='o')	#点   默认是蓝色
plt.plot(x,x+,'x',label='x')	#叉叉  默认是蓝色
plt.plot(x,x+,'dr',label='dr')	#砖石  红色
#添加图例右下角 lower right	左上角 upper left  边框  透明度  阴影  边框宽度
plt.legend(loc='lower right',fancybox=True,framealpha=,shadow=True,borderpad=1) 
plt.show()

4 绘制柱状图

使用 bar 函数可以绘制柱状图。柱状图需要水平的x 坐标值,以及每一个 x 坐标值对应的 y 坐标值,从而形成柱状的图。柱状图主要用来纵向对比和横向对比的。例如,根据年份对销售收据进行纵向对比,x 坐标值就表示年份,y 坐标值表示销售数据。

【示例 12】使用 bar()绘制柱状图,并设置柱的宽度

import matplotlib.pyplot as plt 
import numpy as np 
x=[,1985,1990,1995]
x_labels=[' 年','1985 年','1990 年','1995 年']
y=[,3000,4000,5000]
plt.bar(x,y,width=)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.xticks(x,x_labels) 
plt.xlabel('年份') 
plt.ylabel('销量')
plt.title('根据年份销量对比图')
plt.show()

需要注意的是 bar 函数的宽度并不是像素宽度。bar 函数会根据二维坐标系的尺寸,以及 x 坐标值的多少,自动确定每一个柱的宽度,而 width 指定的宽度就是这个标准柱宽度的倍数。该参数值可以是浮点数,如 0.5,表示柱的宽度是标准宽度的 0.5 倍。

【示例 13】使用 bar()和 barh()函数绘制柱状图

import matplotlib.pyplot as plt 
import numpy as np 
np.random.seed() 
x=np.arange() 
y=np.random.randint(-,5,5) 
print(x,y)
# 将画布分隔成一行两列
plt.subplot(,2,1) 
#在第一列中画图
v_bar=plt.bar(x,y)
#在第一列的画布中 位置画一条蓝线
plt.axhline(,color='blue',linewidth=2) 
plt.subplot(,2,2)
#barh 将 y 和 x 轴对换 竖着方向为 x 轴
h_bar=plt.barh(x,y,color='red')
#在第二列的画布中 位置处画蓝色的线
plt.axvline(,color='red',linewidth=2) 
plt.show()

【示例 14】对柱状图的部分柱状设置颜色

import matplotlib.pyplot as plt 
import numpy as np 
np.random.seed() 
x=np.arange() 
y=np.random.randint(-,5,5)
v_bar=plt.bar(x,y,color='lightblue')
for bar,height in zip(v_bar,y):
    if height<:
        bar.set(edgecolor='darkred',color='lightgreen',linewidth=)
plt.show()

【示例 15】使用 bar()绘制三天中三部电影的票房变化

import matplotlib.pyplot as plt 
import numpy as np
#三天中三部电影的票房变化
real_names=['千与千寻','玩具总动员','黑衣人:全球追缉']
real_num=[5453,7548,6543] 
real_num=[1840,4013,3421] 
real_num=[1080,1673,2342]
#生成 x	第 天   第 2 天   第 3 天
x=np.arange(len(real_names))
x_label=['第{}天'.format(i+) for i in range(len(real_names))]
#绘制柱状图#设置柱的宽度
width=.3
plt.bar(x,real_num,color='g',width=width,label=real_names[0])
plt.bar([i+width for i in x],real_num,color='b',width=width,label=real_names[1]) 
plt.bar([i+*width for i in x],real_num3,color='r',width=width,label=real_names[2]) 
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
#修改 x 坐标
plt.xticks([i+width for i in x],x_label)
#添加图例plt.legend() #添加标题
plt.title(' 天的票房数')
plt.show()

5 绘制饼状图

pie 函数可以绘制饼状图,饼图主要是用来呈现比例的。只要传入比例数据即可。

【示例 16】绘制饼状图

#导入模块
import matplotlib.pyplot as plt 
import numpy as np
#准备男、女的人数及比例
man=
woman= 
man_perc=man/(woman+man) 
woman_perc=woman/(woman+man) #添加名称
labels=['男','女'] #添加颜色
colors=['blue','red'] #绘制饼状图  pie
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
# labels  名称 colors:颜色,explode=分裂  autopct 显示百分比
paches,texts,autotexts=plt.pie([man_perc,woman_perc],labels=labels,colors=colors,explode=(,0.05),autopct='%0.1f%%')
#设置饼状图中的字体颜色
for text in autotexts:
	text.set_color('white')
#设置字体大小
for text in texts+autotexts:
	text.set_fontsize()
plt.show()

6 绘制直方图

直方图与柱状图的分格类似,都是由若干个柱组成,但直方图和柱状图的含义却有很大的差异。直方图

是用来观察分布状态的,而柱状图是用来看每一个 X 坐标对应的 Y 的值的。也就是说,直方图关注的是分布,并不关心具体的某个值,而柱状图关心的是具体的某个值。使用 hist函数绘制直方图。

【示例 17】绘制直方图

import numpy as np
import matplotlib.pyplot as plt
#频次直方图,均匀分布
#正太分布
x=np.random.randn() 
#画正太分布图
# plt.hist(x)
plt.hist(x,bins=) #装箱的操作,将 10 个柱装到一起及修改柱的宽度
plt.show()

【示例 18】同一画布绘制三个直方图

import numpy as np
import matplotlib.pyplot as plt
#几个直方图画到一个画布中,第一个参数期望  第二个均值
x=np.random.normal(0,0.8,1000) 
x=np.random.normal(-2,1,1000) 
x=np.random.normal(3,2,1000)
#参数分别是 bins:装箱,alpha:透明度
kwargs=dict(bins=,alpha=0.4) 
plt.hist(x,**kwargs)
plt.hist(x,**kwargs) 
plt.hist(x,**kwargs) 
plt.show()

7 绘制等高线图

【 示例 19 】使用matplotlib 绘制等高线图

#导入模块
import matplotlib.pyplot as plt 
import numpy as np
x=np.linspace(-,10,100)
y=np.linspace(-,10,100)
#计算 x 和 y 的相交点 a
X,Y=np.meshgrid(x,y)
# 计算 Z 的坐标
Z=np.sqrt(X**+Y**2) 
plt.contourf(X,Y,Z) 
plt.contour(X,Y,Z)
# 颜色越深表示值越小,中间的黑色表示 z=.
plt.show()

8 绘制三维图

使用 pyplot 包和 Matplotlib 绘制三维图。

【示例 20】使用 Matplotlib 绘制三维图

import matplotlib.pyplot as plt
#导入D 包
from mpl_toolkits.mplotd import Axes3D
#创建 X、Y、Z 坐标
X=[,1,2,2] 
Y=[,4,4,3] 
Z=[,100,1,1]
fig = plt.figure()
#  创建了一个 AxesD 的子图放到 figure 画布里面
ax = AxesD(fig) 
ax.plot_trisurf(X, Y, Z)
plt.show()