Rust源码分析——Rc 和 Weak 源码详解

Rust
354
0
0
2024-01-31

Rc 和 Weak 源码详解

一个值需要被多个所有者拥有

  1. rust中所有权机制在图这种数据结构中,一个节点可能被多个其它节点所指向。那么如何表示图这种数据结构?
  2. 在多线程中,多个线程可能会持有同一个数据?如何解决这个问题。

Rc

rust 通过使用引用计数智能指针 Rc 和 Arc 来解决上面的问题。当我们对一个被 Rc 所标识的数据进行 clone() 的时候,并不会复制其内部数据,只是增加引用计数,而当一个 Rc 被 drop 的时候,只会减少其引用计数,直到引用计数为0,此时才会真正清除对应的内存。

但是使用引用计数方案有一个问题,那就是如何解决循环引用问题?rust 为了解决这个问题,提供了弱引用(Weak)。它不拥有数据的所有权,只产生弱引用计数。

我们来看一下 Rc 这个结构

#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct Rc<T: ?Sized> {
    ptr: NonNull<RcBox<T>>,
    phantom: PhantomData<RcBox<T>>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Send for Rc<T> {}

// Note that this negative impl isn't strictly necessary for correctness,
// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
// However, given how important `Rc`'s `!Sync`-ness is,
// having an explicit negative impl is nice for documentation purposes
// and results in nicer error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Sync for Rc<T> {}

首先,Rc 是一个结构体,可以看到它不满足 Send 和 Sync 这两个 trait,这意味着 Rc 是不能跨线程的,它只适用于单线程下的引用计数。这是 rust 专门为单线程场景设计的高性能引用计数器;而多线程下需要 Arc (atomic reference counting)来实现多线程的引用计数。

另外一点就是 Rc 接受的泛型参数可以是大小未知(unsized)类型。Rc 结构体中有两个字段 ptr 和 phantom 。ptr 的类型是NonNull<RcBox<T>>

pub struct NonNull<T: ?Sized> {
    pointer: *const T,
}

也就是说 ptr 实际上是一个指向 RcBox<T> 的非空指针。OK,我们接着来看一下 RcBox 类型

struct RcBox<T: ?Sized> {
    strong: Cell<usize>,
    weak: Cell<usize>,
    value: T,
}

下面,让我来详细解释这个结构体的各个字段:

  1. strong: Cell<usize>:这个字段是一个 Cell 类型的包装,用于存储强引用计数(strong reference count)。Cell 是 rust标准库提供的一种允许在不可变情况下修改其内部值的类型。强引用计数用于跟踪有多少个 Rc 实例仍然拥有对数据的引用。每当创建一个新的 Rc 引用时,强引用计数会递增;当 Rc 引用离开作用域或被丢弃时,强引用计数递减。
  2. weak: Cell<usize>:这个字段是一个 Cell 类型的包装,用于存储弱引用计数(weak reference count)。弱引用计数用于跟踪有多少个 Weak 引用(Rc 的弱引用)仍然存在,但它不会阻止数据的销毁。与强引用不同,当只有弱引用剩余时,数据可以被销毁。每当创建一个新的 Weak 引用时,弱引用计数会递增;当Weak 引用离开作用域或被丢弃时,弱引用计数递减。
  3. value: T:这是 Rc 包装的实际值的字段。Rc 用于共享这个值,因此它包含在 RcBox 中。

既然强引用,弱引用以及值都包含在 RcBox 中了,那么 phantom: PhantomData<RcBox<T>> 的作用是什么?

PhantomData 是一个泛型类型,通常用于标记类型参数在运行时不实际占用内存。在这里,它用于确保 RcBox<T> 存在,尽管它在运行时不占用内存。这是为了帮助Rust编译器进行正确的类型检查和生命周期分析。

pub struct PhantomData<T: ?Sized>;

正如我们所见,PhantomData 是一个单元结构体,它的大小是零字节,不占用内存空间。

我们进一步来看一下 Rc 的构造方法,看看它到底是如何做到让一个值可以有多个所有者?按照之前的一个值只有一个所有者的模型,当所有者生命周期结束的时候,值就会被回收;而 Rc 是在强引用计数到 0 的时候,释放内存。

pub fn new(value: T) -> Rc<T> {
    // There is an implicit weak pointer owned by all the strong
    // pointers, which ensures that the weak destructor never frees
    // the allocation while the strong destructor is running, even
    // if the weak pointer is stored inside the strong one.
    unsafe {
        Self::from_inner(
            Box::leak(Box::new(RcBox { strong: Cell::new(1), weak: Cell::new(1), value }))
                .into(),
        )
    }
}

首先,我们注意到 new 的实现代码是 unsafe 的,这是因为 Box::leak 方法将 Box 中的数据泄漏(leak)出来,而这个操作将绕过 Rust 的所有权和生命周期检查,这样 RcBox 结构体数据将被泄漏到堆上,使其在函数结束后继续存在,而不是按正常方式被释放,通过这种手段,让 RcBox 拥有了足够长的生命周期,以便在多个 Rc 实例之间正确地共享数据。

这段代码的注释中还告诉了我们:所有强引用指针(Rc 实例)之间都存在一个隐式的弱引用指针。这个隐式的弱引用用于确保在强引用的析构函数运行期间,弱引用不会释放数据,即使在强引用指针中存储了一个弱引用。这样可以保证弱引用不会获取到一个悬垂指针。

接着,我们来看一下析构函数的代码。

fn drop(&mut self) {
    unsafe {
        self.inner().dec_strong();      // 强引用计数减 1
        if self.inner().strong() == 0 {
            // destroy the contained object
            ptr::drop_in_place(Self::get_mut_unchecked(self));

            // remove the implicit "strong weak" pointer now that we've
            // destroyed the contents.
            self.inner().dec_weak();    // 弱引用计数减 1

            if self.inner().weak() == 0 {
                Global.deallocate(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
            }
        }
    }
}
  1. 如果强引用计数为零,表示没有任何强引用指向数据了,这意味着数据可以安全地被销毁。
  2. 如果弱引用计数降至零,表示没有任何弱引用指向数据,将弱引用相关的资源清理掉。

Weak

我们顺便来看一下弱引用,Weak 用于创建弱引用,通常与 Rc 智能指针一起使用。

pub struct Weak<T: ?Sized> {
    // This is a `NonNull` to allow optimizing the size of this type in enums,
    // but it is not necessarily a valid pointer.
    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
    // to allocate space on the heap. That's not a value a real pointer
    // will ever have because RcBox has alignment at least 2.
    // This is only possible when `T: Sized`; unsized `T` never dangle.
    ptr: NonNull<RcBox<T>>,
}

Weak 也存储了一个指向 RcBox 的指针。看起来这是比 Rc 少了一个标记字段,实际上它们的构造函数完全不同。

pub const fn new() -> Weak<T> {
    Weak { ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<RcBox<T>>(usize::MAX)) } }
}

ptr::invalid_mut 函数来创建一个无效的指针,其值被设置为 usize::MAX。这个无效指针用于表示一个 Weak 弱引用指针,它不引用任何真实的数据,但是用于表示一个空的 Weak 实例,然后将其包装在 NonNull 中,并返回作为 Weak 实例的一部分。这个无效的 Weak 实例通常用于初始化,之后可以使用 upgrade 方法来尝试获取一个真实的强引用。

实际上,在 Weak 结构体的注释中已经解释了 new 方法为什么会是这样。设置为 usize::MAX 的目的是为了避免在创建 Weak 时需要分配堆内存。由于 Weak 通常用于检查数据的存在性而不需要实际引用数据。

我们再来看一下析构函数,

fn drop(&mut self) {
    let inner = if let Some(inner) = self.inner() { inner } else { return };

    inner.dec_weak();   // 弱引用计数减1
    // the weak count starts at 1, and will only go to zero if all
    // the strong pointers have disappeared.
    if inner.weak() == 0 {
        unsafe {
            Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
        }
    }
}

let inner = if let Some(inner) = self.inner() { inner } else { return };:这一行代码的目的是获取 Weak 引用内部的 RcBox 数据结构,以便后续操作。self.inner() 方法用于获取内部数据,如果存在则返回 Some(inner),否则返回 None。如果不存在内部数据,说明这个 Weak 已经被销毁,所以函数提前返回(return)。

如果弱引用计数降至零,说明没有任何弱引用指向数据,这意味着数据可以被释放。此时使用 Global.deallocate 来释放和 Weak 相关的内存。

参考资料

Rust 官方文档: https://doc.rust-lang.org/std/rc/struct.Rc.html