Golang实现常见的限流算法的示例代码

Golang
300
0
0
2023-09-13
目录
  • 固定窗口
  • 滑动窗口
  • 漏桶算法
  • 令牌桶
  • 滑动日志
  • 总结

限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率

这个文章主要是使用Go实现常见的限流算法,代码参考了文章面试官:来,年轻人!请手撸5种常见限流算法! 和面试必备:4种经典限流算法讲解如果需要Java实现或更详细的算法介绍可以看这两篇文章

固定窗口

每开启一个新的窗口,在窗口时间大小内,可以通过窗口请求上限个请求。

该算法主要是会存在临界问题,如果流量都集中在两个窗口的交界处,那么突发流量会是设置上限的两倍。

package limiter

import (
   "sync"
   "time"
)

// FixedWindowLimiter 固定窗口限流器
type FixedWindowLimiter struct {
   limit    int           // 窗口请求上限
   window   time.Duration // 窗口时间大小
   counter  int           // 计数器
   lastTime time.Time     // 上一次请求的时间
   mutex    sync.Mutex    // 避免并发问题
}

func NewFixedWindowLimiter(limit int, window time.Duration) *FixedWindowLimiter {
   return &FixedWindowLimiter{
      limit:    limit,
      window:   window,
      lastTime: time.Now(),
   }
}

func (l *FixedWindowLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()
   // 获取当前时间
   now := time.Now()
   // 如果当前窗口失效,计数器清,开启新的窗口
   if now.Sub(l.lastTime) > l.window {
      l.counter =
      l.lastTime = now
   }
   // 若到达窗口请求上限,请求失败
   if l.counter >= l.limit {
      return false
   }
   // 若没到窗口请求上限,计数器+,请求成功
   l.counter++
   return true
}

滑动窗口

滑动窗口类似于固定窗口,它只是把大窗口切分成多个小窗口,每次向右移动一个小窗口,它可以避免两倍的突发流量。

固定窗口可以说是滑动窗口的一种特殊情况,只要滑动窗口里面的小窗口和大窗口大小一样。

窗口算法都有一个问题,当流量达到上限,后面的请求都会被拒绝。

package limiter

import (
   "errors"
   "sync"
   "time"
)

// SlidingWindowLimiter 滑动窗口限流器
type SlidingWindowLimiter struct {
   limit        int           // 窗口请求上限
   window       int         // 窗口时间大小
   smallWindow  int         // 小窗口时间大小
   smallWindows int         // 小窗口数量
   counters     map[int]int // 小窗口计数器
   mutex        sync.Mutex    // 避免并发问题
}

// NewSlidingWindowLimiter 创建滑动窗口限流器
func NewSlidingWindowLimiter(limit int, window, smallWindow time.Duration) (*SlidingWindowLimiter, error) {
   // 窗口时间必须能够被小窗口时间整除
   if window%smallWindow != {
      return nil, errors.New("window cannot be split by integers")
   }

   return &SlidingWindowLimiter{
      limit:        limit,
      window:       int(window),
      smallWindow:  int(smallWindow),
      smallWindows: int(window / smallWindow),
      counters:     make(map[int]int),
   }, nil
}

func (l *SlidingWindowLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 获取当前小窗口值
   currentSmallWindow := time.Now().UnixNano() / l.smallWindow * l.smallWindow
   // 获取起始小窗口值
   startSmallWindow := currentSmallWindow - l.smallWindow*(l.smallWindows-)

   // 计算当前窗口的请求总数
   var count int
   for smallWindow, counter := range l.counters {
      if smallWindow < startSmallWindow {
         delete(l.counters, smallWindow)
      } else {
         count += counter
      }
   }

   // 若到达窗口请求上限,请求失败
   if count >= l.limit {
      return false
   }
   // 若没到窗口请求上限,当前小窗口计数器+,请求成功
   l.counters[currentSmallWindow]++
   return true
}

漏桶算法

漏桶是模拟一个漏水的桶,请求相当于往桶里倒水,处理请求的速度相当于水漏出的速度。

主要用于请求处理速率较为稳定的服务,需要使用生产者消费者模式把请求放到一个队列里,让消费者以一个较为稳定的速率处理。

package limiter

import (
   "sync"
   "time"
)

// LeakyBucketLimiter 漏桶限流器
type LeakyBucketLimiter struct {
   peakLevel       int        // 最高水位
   currentLevel    int        // 当前水位
   currentVelocity int        // 水流速度/秒
   lastTime        time.Time  // 上次放水时间
   mutex           sync.Mutex // 避免并发问题
}

func NewLeakyBucketLimiter(peakLevel, currentVelocity int) *LeakyBucketLimiter {
   return &LeakyBucketLimiter{
      peakLevel:       peakLevel,
      currentVelocity: currentVelocity,
      lastTime:        time.Now(),
   }
}

func (l *LeakyBucketLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 尝试放水
   now := time.Now()
   // 距离上次放水的时间
   interval := now.Sub(l.lastTime)
   if interval >= time.Second {
      // 当前水位-距离上次放水的时间(秒)*水流速度
      l.currentLevel = maxInt(, l.currentLevel-int(interval/time.Second)*l.currentVelocity)
      l.lastTime = now
   }

   // 若到达最高水位,请求失败
   if l.currentLevel >= l.peakLevel {
      return false
   }
   // 若没有到达最高水位,当前水位+,请求成功
   l.currentLevel++
   return true
}

func maxInt(a, b int) int {
   if a > b {
      return a
   }
   return b
}

令牌桶

与漏桶算法的相反,令牌桶会不断地把令牌添加到桶里,而请求会从桶中获取令牌,只有拥有令牌地请求才能被接受。

因为桶中可以提前保留一些令牌,所以它允许一定地突发流量通过。

package limiter

import (
   "sync"
   "time"
)

// TokenBucketLimiter 令牌桶限流器
type TokenBucketLimiter struct {
   capacity      int        // 容量
   currentTokens int        // 令牌数量
   rate          int        // 发放令牌速率/秒
   lastTime      time.Time  // 上次发放令牌时间
   mutex         sync.Mutex // 避免并发问题
}

func NewTokenBucketLimiter(capacity, rate int) *TokenBucketLimiter {
   return &TokenBucketLimiter{
      capacity: capacity,
      rate:     rate,
      lastTime: time.Now(),
   }
}

func (l *TokenBucketLimiter) TryAcquire() bool {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 尝试发放令牌
   now := time.Now()
   // 距离上次发放令牌的时间
   interval := now.Sub(l.lastTime)
   if interval >= time.Second {
      // 当前令牌数量+距离上次发放令牌的时间(秒)*发放令牌速率
      l.currentTokens = minInt(l.capacity, l.currentTokens+int(interval/time.Second)*l.rate)
      l.lastTime = now
   }

   // 如果没有令牌,请求失败
   if l.currentTokens == {
      return false
   }
   // 如果有令牌,当前令牌-,请求成功
   l.currentTokens--
   return true
}

func minInt(a, b int) int {
   if a < b {
      return a
   }
   return b
}

滑动日志

滑动日志与滑动窗口算法类似,但是滑动日志主要用于多级限流的场景,比如短信验证码1分钟1次,1小时10次,1天20次这种业务。

算法流程与滑动窗口相同,只是它可以指定多个策略,同时在请求失败的时候,需要通知调用方是被哪个策略所拦截。

package limiter

import (
   "errors"
   "fmt"
   "sort"
   "sync"
   "time"
)

// ViolationStrategyError 违背策略错误
type ViolationStrategyError struct {
   Limit  int           // 窗口请求上限
   Window time.Duration // 窗口时间大小
}

func (e *ViolationStrategyError) Error() string {
   return fmt.Sprintf("violation strategy that limit = %d and window = %d", e.Limit, e.Window)
}

// SlidingLogLimiterStrategy 滑动日志限流器的策略
type SlidingLogLimiterStrategy struct {
   limit        int   // 窗口请求上限
   window       int // 窗口时间大小
   smallWindows int // 小窗口数量
}

func NewSlidingLogLimiterStrategy(limit int, window time.Duration) *SlidingLogLimiterStrategy {
   return &SlidingLogLimiterStrategy{
      limit:  limit,
      window: int(window),
   }
}

// SlidingLogLimiter 滑动日志限流器
type SlidingLogLimiter struct {
   strategies  []*SlidingLogLimiterStrategy // 滑动日志限流器策略列表
   smallWindow int                        // 小窗口时间大小
   counters    map[int]int                // 小窗口计数器
   mutex       sync.Mutex                   // 避免并发问题
}

func NewSlidingLogLimiter(smallWindow time.Duration, strategies ...*SlidingLogLimiterStrategy) (*SlidingLogLimiter, error) {
   // 复制策略避免被修改
   strategies = append(make([]*SlidingLogLimiterStrategy,, len(strategies)), strategies...)

   // 不能不设置策略
   if len(strategies) == {
      return nil, errors.New("must be set strategies")
   }

   // 排序策略,窗口时间大的排前面,相同窗口上限大的排前面
   sort.Slice(strategies, func(i, j int) bool {
      a, b := strategies[i], strategies[j]
      if a.window == b.window {
         return a.limit > b.limit
      }
      return a.window > b.window
   })
   fmt.Println(strategies[], strategies[1])

   for i, strategy := range strategies {
      // 随着窗口时间变小,窗口上限也应该变小
      if i > {
         if strategy.limit >= strategies[i-].limit {
            return nil, errors.New("the smaller window should be the smaller limit")
         }
      }
      // 窗口时间必须能够被小窗口时间整除
      if strategy.window%int(smallWindow) != 0 {
         return nil, errors.New("window cannot be split by integers")
      }
      strategy.smallWindows = strategy.window / int(smallWindow)
   }

   return &SlidingLogLimiter{
      strategies:  strategies,
      smallWindow: int(smallWindow),
      counters:    make(map[int]int),
   }, nil
}

func (l *SlidingLogLimiter) TryAcquire() error {
   l.mutex.Lock()
   defer l.mutex.Unlock()

   // 获取当前小窗口值
   currentSmallWindow := time.Now().UnixNano() / l.smallWindow * l.smallWindow
   // 获取每个策略的起始小窗口值
   startSmallWindows := make([]int, len(l.strategies))
   for i, strategy := range l.strategies {
      startSmallWindows[i] = currentSmallWindow - l.smallWindow*(strategy.smallWindows-)
   }

   // 计算每个策略当前窗口的请求总数
   counts := make([]int, len(l.strategies))
   for smallWindow, counter := range l.counters {
      if smallWindow < startSmallWindows[] {
         delete(l.counters, smallWindow)
         continue
      }
      for i := range l.strategies {
         if smallWindow >= startSmallWindows[i] {
            counts[i] += counter
         }
      }
   }

   // 若到达对应策略窗口请求上限,请求失败,返回违背的策略
   for i, strategy := range l.strategies {
      if counts[i] >= strategy.limit {
         return &ViolationStrategyError{
            Limit:  strategy.limit,
            Window: time.Duration(strategy.window),
         }
      }
   }

   // 若没到窗口请求上限,当前小窗口计数器+,请求成功
   l.counters[currentSmallWindow]++
   return nil
}

总结

  • 如果需要一个简单高效的算法,可以使用固定窗口,但是它可能产生两倍的突发流量
  • 可以通过滑动窗口避免突发流量问题,但是窗口可能会掐断流量一段时间
  • 如果需要更平滑的流量,可以使用漏桶算法搭配生产者消费者模式
  • 如果能够处理一定的突发流量,可以使用令牌桶算法
  • 遇到多级限流的场景,滑动日志会更加适合

全部源码:https://github.com/jiaxwu/limiter