目录
- 为什么要用内存池
- 内存池原理
- 内存池设计
- 内存池实现
为什么要用内存池
C++程序默认的内存管理(new,delete,malloc,free)会频繁地在堆上分配和释放内存,导致性能的损失,产生大量的内存碎片,降低内存的利用率。默认的内存管理因为被设计的比较通用,所以在性能上并不能做到极致。
因此,很多时候需要根据业务需求设计专用内存管理器,便于针对特定数据结构和使用场合的内存管理,比如:内存池。
内存池原理
内存池的思想是,在真正使用内存之前,预先申请分配一定数量、大小预设的内存块留作备用。当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存,当内存释放后就回归到内存块留作后续的复用,使得内存使用效率得到提升,一般也不会产生不可控制的内存碎片。
内存池设计
算法原理:
1.预申请一个内存区chunk,将内存中按照对象大小划分成多个内存块block
2.维持一个空闲内存块链表,通过指针相连,标记头指针为第一个空闲块
3.每次新申请一个对象的空间,则将该内存块从空闲链表中去除,更新空闲链表头指针
4.每次释放一个对象的空间,则重新将该内存块加到空闲链表头
5.如果一个内存区占满了,则新开辟一个内存区,维持一个内存区的链表,同指针相连,头指针指向最新的内存区,新的内存块从该区内重新划分和申请
如图所示:
内存池实现
memory_pool.hpp
template<size_t BlockSize, size_t BlockNum = 10> | |
class MemoryPool | |
{ | |
public: | |
MemoryPool() | |
{ | |
std::lock_guard<std::mutex> lk(mtx); // avoid race condition | |
// init empty memory pointer | |
free_block_head = NULL; | |
mem_chunk_head = NULL; | |
} | |
~MemoryPool() | |
{ | |
std::lock_guard<std::mutex> lk(mtx); // avoid race condition | |
// destruct automatically | |
MemChunk* p; | |
while (mem_chunk_head) | |
{ | |
p = mem_chunk_head->next; | |
delete mem_chunk_head; | |
mem_chunk_head = p; | |
} | |
} | |
void* allocate() | |
{ | |
std::lock_guard<std::mutex> lk(mtx); // avoid race condition | |
// allocate one object memory | |
// if no free block in current chunk, should create new chunk | |
if (!free_block_head) | |
{ | |
// malloc mem chunk | |
MemChunk* new_chunk = new MemChunk; | |
new_chunk->next = NULL; | |
// set this chunk's first block as free block head | |
free_block_head = &(new_chunk->blocks[0]); | |
// link the new chunk's all blocks | |
for (int i = 1; i < BlockNum; i++) | |
new_chunk->blocks[i - 1].next = &(new_chunk->blocks[i]); | |
new_chunk->blocks[BlockNum - 1].next = NULL; // final block next is NULL | |
if (!mem_chunk_head) | |
mem_chunk_head = new_chunk; | |
else | |
{ | |
// add new chunk to chunk list | |
mem_chunk_head->next = new_chunk; | |
mem_chunk_head = new_chunk; | |
} | |
} | |
// allocate the current free block to the object | |
void* object_block = free_block_head; | |
free_block_head = free_block_head->next; | |
return object_block; | |
} | |
void* allocate(size_t size) | |
{ | |
std::lock_guard<std::mutex> lk(array_mtx); // avoid race condition for continuous memory | |
// calculate objects num | |
int n = size / BlockSize; | |
// allocate n objects in continuous memory | |
// FIXME: make sure n > 0 | |
void* p = allocate(); | |
for (int i = 1; i < n; i++) | |
allocate(); | |
return p; | |
} | |
void deallocate(void* p) | |
{ | |
std::lock_guard<std::mutex> lk(mtx); // avoid race condition | |
// free object memory | |
FreeBlock* block = static_cast<FreeBlock*>(p); | |
block->next = free_block_head; // insert the free block to head | |
free_block_head = block; | |
} | |
private: | |
// free node block, every block size exactly can contain one object | |
struct FreeBlock | |
{ | |
unsigned char data[BlockSize]; | |
FreeBlock* next; | |
}; | |
FreeBlock* free_block_head; | |
// memory chunk, every chunk contains blocks number with fixed BlockNum | |
struct MemChunk | |
{ | |
FreeBlock blocks[BlockNum]; | |
MemChunk* next; | |
}; | |
MemChunk* mem_chunk_head; | |
// thread safe related | |
std::mutex mtx; | |
std::mutex array_mtx; | |
}; | |
main.cpp
class MyObject | |
{ | |
public: | |
MyObject(int x): data(x) | |
{ | |
//std::cout << "contruct object" << std::endl; | |
} | |
~MyObject() | |
{ | |
//std::cout << "destruct object" << std::endl; | |
} | |
int data; | |
// override new and delete to use memory pool | |
void* operator new(size_t size); | |
void operator delete(void* p); | |
void* operator new[](size_t size); | |
void operator delete[](void* p); | |
}; | |
// define memory pool with block size as class size | |
MemoryPool<sizeof(MyObject), 3> gMemPool; | |
void* MyObject::operator new(size_t size) | |
{ | |
//std::cout << "new object space" << std::endl; | |
return gMemPool.allocate(); | |
} | |
void MyObject::operator delete(void* p) | |
{ | |
//std::cout << "free object space" << std::endl; | |
gMemPool.deallocate(p); | |
} | |
void* MyObject::operator new[](size_t size) | |
{ | |
// TODO: not supported continuous memoery pool for now | |
//return gMemPool.allocate(size); | |
return NULL; | |
} | |
void MyObject::operator delete[](void* p) | |
{ | |
// TODO: not supported continuous memoery pool for now | |
//gMemPool.deallocate(p); | |
} | |
int main(int argc, char* argv[]) | |
{ | |
MyObject* p1 = new MyObject(1); | |
std::cout << "p1 " << p1 << " " << p1->data<< std::endl; | |
MyObject* p2 = new MyObject(2); | |
std::cout << "p2 " << p2 << " " << p2->data << std::endl; | |
delete p2; | |
MyObject* p3 = new MyObject(3); | |
std::cout << "p3 " << p3 << " " << p3->data << std::endl; | |
MyObject* p4 = new MyObject(4); | |
std::cout << "p4 " << p4 << " " << p4->data << std::endl; | |
MyObject* p5 = new MyObject(5); | |
std::cout << "p5 " << p5 << " " << p5->data << std::endl; | |
MyObject* p6 = new MyObject(6); | |
std::cout << "p6 " << p6 << " " << p6->data << std::endl; | |
delete p1; | |
delete p2; | |
//delete p3; | |
delete p4; | |
delete p5; | |
delete p6; | |
getchar(); | |
return 0; | |
} |
运行结果
p1 00000174BEDE0440 1
p2 00000174BEDE0450 2
p3 00000174BEDE0450 3
p4 00000174BEDE0460 4
p5 00000174BEDD5310 5
p6 00000174BEDD5320 6
可以看到内存地址是连续,并且回收一个节点后,依然有序地开辟内存
对象先开辟内存再构造,先析构再释放内存
注意
- 在内存分配和释放的环节需要加锁来保证线程安全
- 还没有实现对象数组的分配和释放