浅谈.Net异步编程的前世今生----APM篇

.NET
288
0
0
2023-01-07

前言

在.Net程序开发过程中,我们经常会遇到如下场景:

编写WinForm程序客户端,需要查询数据库获取数据,于是我们根据需求写好了代码后,点击查询,发现界面卡死,无法响应。经过调试,发现查询数据库这一步执行了很久,在此过程中,UI被阻塞,无法响应任何操作。

如何解决此问题?我们需要分析问题成因:在WinForm窗体运行时,只有一个主线程,即为UI线程,UI线程在此过程中既负责渲染界面,又负责查询数据,因此在大量耗时的操作中,UI线程无法及时响应导致出现问题。此时我们需要将耗时操作放入异步操作,使主线程继续响应用户的操作,这样可以大大提升用户体验。

直接编写异步编程也许不是一件轻松的事,和同步编程不同的是,异步代码并不是始终按照写好的步骤执行,且如何在异步执行完通知前序步骤也是其中一个问题,因此会带来一系列的考验。

幸运的是,在.Net Framework中,提供了多种异步编程模型以及相关的API,这些模型的存在使得编写异步程序变得容易上手。随着Framework的不断升级,相应的模型也在不断改进,下面我们一起来回顾一下.Net异步编程的前世今生。

第一个异步编程模型:APM

概述

APM,全称Asynchronous Programing Model,顾名思义,它即为异步编程模型,最早出现于.Net Framework 1.x中。

它使用IAsyncResult设计模式的异步操作,一般由BeginOperationNameEndOperationName两个方法实现,这两个方法分别用于开始和结束异步操作,例如FileStream类中提供了BeginRead和EndRead来对文件进行异步字节读取操作。

使用

在程序运行过程中,直接调用BeginOperationName后,会将所包含的方法放入异步操作,并返回一个IAsyncResult结果,同时异步操作在另外一个线程中执行。

每次在调用BeginOperationName方法后,还应调用EndOperationName方法,来获取异步执行的结果,下面我们一起来看一个示例:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace APMTest
{
    class Program
    {
        public delegate void ConsoleDelegate();

        static void Main(string[] args)
        {
            ConsoleDelegate consoleDelegate = new ConsoleDelegate(ConsoleToUI);
            Thread.CurrentThread.Name = "主线程Thread";
            IAsyncResult ar = consoleDelegate.BeginInvoke(null, null);
            consoleDelegate.EndInvoke(ar);
            Console.WriteLine("我是同步输出,我的名字是:" + Thread.CurrentThread.Name);
            Console.Read();
        }

        public static void ConsoleToUI()
        {
            if (Thread.CurrentThread.IsThreadPoolThread)
            {
                Thread.CurrentThread.Name = "线程池Thread";
            }
            else
            {
                Thread.CurrentThread.Name = "普通Thread";
            }
            Thread.Sleep(3000); //模拟耗时操作
            Console.WriteLine("我是异步输出,我的名字是:" + Thread.CurrentThread.Name);
        }
    }
}

在这段示例中,我们定义了一个委托来使用其BeginInvoke/EndInvoke方法用于我们自定义方法的异步执行,同时将线程名称打印出来,用于区分主线程与异步线程。

如代码中所示,在调用BeginInvoke之后,立即调用了EndInvoke获取结果,那么会发生什么呢?

如下图所示:

img

看到这里大家也许会比较诧异:为什么同步操作会在异步操作之后输出呢?这样不是和同步就一样了吗?

原因是这样的:EndInvoke方法会阻塞调用线程,直到异步调用结束,由于我们在异步操作中模拟了3s耗时操作,所以它会一直等待到3s结束后输出异步信息,此时才完成了异步操作,进而进行下一步的同步操作。

同时在BeginInvoke返回的IAynscResult中,包含如下属性:

img

通过轮询IsCompleted属性或使用AsyncWaitHandle属性,均可以获取异步操作是否完成,从而进行下一步操作,相关代码如下所示:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace APMTest
{
    class Program
    {
        public delegate void ConsoleDelegate();

        static void Main(string[] args)
        {
            ConsoleDelegate consoleDelegate = new ConsoleDelegate(ConsoleToUI);
            Thread.CurrentThread.Name = "主线程Thread";
            IAsyncResult ar = consoleDelegate.BeginInvoke(null, null);
            //此处改为了轮询IsCompleted属性,AsyncWaitHandle属性同理 
            while (!ar.IsCompleted)
            {
                Console.WriteLine("等待执行...");
            }
            consoleDelegate.EndInvoke(ar);
            Console.WriteLine("我是同步输出,我的名字是:" + Thread.CurrentThread.Name);
            Console.Read();
        }

        public static void ConsoleToUI()
        {
            if (Thread.CurrentThread.IsThreadPoolThread)
            {
                Thread.CurrentThread.Name = "线程池Thread";
            }
            else
            {
                Thread.CurrentThread.Name = "普通Thread";
            }
            Thread.Sleep(3000); //模拟耗时操作
            Console.WriteLine("我是异步输出,我的名字是:" + Thread.CurrentThread.Name);
        }
    }
}

运行后结果如下:

img

可以发现,在轮询属性时,程序仍然会等待异步操作完成,进而进行下一步的同步输出,无法达到我们需要的效果,那么究竟有没有办法解决呢?

此时我们需要引入一个新方法:使用回调。

在之前的操作中,使用BeginInvoke方法,两个参数总是传入的为null。若要使用回调机制,则需传入一个类型为AsyncCallback的回调函数,并在最后一个参数中,传入需要使用的参数,如以下代码所示:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace APMTest
{
    class Program
    {
        public delegate void ConsoleDelegate();

        static void Main(string[] args)
        {
            ConsoleDelegate consoleDelegate = new ConsoleDelegate(ConsoleToUI);
            Thread.CurrentThread.Name = "主线程Thread";
            //此处传入AsyncCallback类型的回调函数,并传入需要使用的参数
            consoleDelegate.BeginInvoke(CallBack, consoleDelegate);
            //IAsyncResult ar = consoleDelegate.BeginInvoke(null, null); 
            ////此处改为了轮询IsCompleted属性,AsyncWaitHandle属性同理 
            //while (!ar.IsCompleted) 
            //{ 
            //    Console.WriteLine("等待执行..."); 
            //} 
            //consoleDelegate.EndInvoke(ar);
            Console.WriteLine("我是同步输出,我的名字是:" + Thread.CurrentThread.Name);
            Console.Read();
        }

        public static void ConsoleToUI()
        {
            if (Thread.CurrentThread.IsThreadPoolThread)
            {
                Thread.CurrentThread.Name = "线程池Thread";
            }
            else
            {
                Thread.CurrentThread.Name = "普通Thread";
            }
            Thread.Sleep(3000); //模拟耗时操作
            Console.WriteLine("我是异步输出,我的名字是:" + Thread.CurrentThread.Name);
        }

        public static void CallBack(IAsyncResult ar)
        {
            //使用IAsyncResult的AsyncState获取BeginInvoke中的参数,并用于执行EndInvoke
            ConsoleDelegate callBackDelegate = ar.AsyncState as ConsoleDelegate;
            callBackDelegate.EndInvoke(ar);
        }
    }
}

运行后结果如下:

img

此时可以看出,使用回调的方式已经实现了我们需要的效果。在同步执行时,将耗时操作放入异步操作,从而不影响同步操作的继续执行,在异步操作完成后,回调返回相应的结果。

小结

APM模型的引入,使得编写异步程序变的如此简单,只需定义委托,将要执行的方法包含其中,并调用Begin/End方法对,即可实现异步编程。在一些基础类库中,也已经提供了异步操作的方法,直接调用即可。

同时我们可以看到,BeginInvoke方法,实际上是调用了线程池中的线程进行操作,因此APM模型也应属于多线程程序,同时包含主线程与线程池线程。

但是APM模型也存在一些缺点:

  • 若不使用回调机制,则需等待异步操作完成后才能继续执行,此时未达到异步操作的效果。
  • 在异步操作的过程中,无法取消,也无法得知操作进度。
  • 若编写GUI程序,异步操作内容与主线程未在同一线程,操作控件时会引起线程安全问题。

为了解决这些缺陷,微软推出了其他的异步模式,预知后事如何,且听下回分解。